On the Existence of Unions of Timed Scenarios

Neda Saeedloei

Towson University MD, USA

December 4, 2024

- Background: Timed Scenarios
 - Semantics
 - Consistency
 - Distance Tables
 - Union of Timed Scenarios

Necessary and Sufficient Conditions for the Existence of Unions

Background: Timed Scenarios

- A formal way of specifying behaviours of a real-time system
- A timed scenario specifies all the behaviours that:
 - share a particular sequence of events;
 - satisfy the constraints on the times between events.

Scenarios: Example

$$\xi=(\mathcal{E},\mathcal{C})$$

$$\xi_1=(a\ b\ c\ f,\{ au_{0,1}\leq 5, au_{0,2}\leq 4\})$$
 is represented by

$$\xi_1 \begin{array}{|c|c|c|}\hline 0: & a; \\ 1: & b \ \{\tau_{01} \le 5\}; \\ 2: & c \ \{\tau_{02} \le 4\}; \\ 3: & f \ . \\ \end{array}$$

Semantics of Scenarios

$$\xi_1 \begin{cases} 0: a; \\ 1: b \{\tau_{01} \leq 5\}; \\ 2: c \{\tau_{02} \leq 4\}; \\ 3: f. \end{cases}$$

 $[\xi_1]$: the set of behaviours that are allowed by ξ_1

$$\llbracket \xi_1 \rrbracket = \{ (a, t_0)(b, t_1)(c, t_2)(f, t_3) \mid t_0 \le t_1 \le t_2 \le t_3 \land t_1 - t_0 \le 5 \land t_2 - t_0 \le 4 \}$$

Semantics of Scenarios

$$\xi_1$$
 $egin{array}{ll} 0: & a; \\ 1: & b \ \{ au_{01} \le 5 \}; \\ 2: & c \ \{ au_{02} \le 4 \}; \\ 3: & f \ . \end{array}$

For
$$i < j$$
: $t_{ij} = t_j - t_i$

 $[\xi_1]$: the set of behaviours that are allowed by ξ_1

$$\llbracket \xi_1 \rrbracket = \{ (a, t_0)(b, t_1)(c, t_2)(f, t_3) \mid t_0 \le t_1 \le t_2 \le t_3 \land t_{01} \le 5 \land t_{02} \le 4 \}$$

Consistency of Scenarios

A scenario ξ is *consistent* iff $[\![\xi]\!] \neq \emptyset$; otherwise it is *inconsistent*.

Example:

$$\xi_1 \begin{array}{|c|c|c|}\hline 0: & a; \\ 1: & b & \{\tau_{01} \leq 5\}; \\ 2: & c & \{\tau_{02} \leq 4\}; \\ 3: & f. \\ \hline \end{array}$$

$$\xi_2 \begin{cases} 0: a; \\ 1: b \{\tau_{01} \geq 2\}; \\ 2: c \{\tau_{12} \geq 2\}; \\ 3: f \{\tau_{03} \leq 2\}. \end{cases}$$

 ξ_1 is consistent, while ξ_2 is inconsistent.

Upper and Lower Bounds on Time Differences

 ξ : a consistent scenario of length nFor $0 \le i \le j \le n$:

$$m_{ij}^{\xi} = min\{t_{ij}^{\mathcal{B}} \mid \mathcal{B} \in \llbracket \xi \rrbracket \}$$

$$M_{ii}^{\xi} = max\{t_{ii}^{\mathcal{B}} \mid \mathcal{B} \in \llbracket \xi \rrbracket \}$$

If there is no upper bound for some i and j, then $M_{ii}^{\xi} = \infty$.

Obviously $0 \le m_{ii} \le t_{ii} \le M_{ii} \le \infty$.

Theorem

For $0 \le i < j < k \le n$:

$$m_{ij} + m_{jk} \le m_{ik} \le \left\{ \begin{array}{l} m_{ij} + M_{jk} \\ M_{ij} + m_{jk} \end{array} \right\} \le M_{ik} \le M_{ij} + M_{jk}$$
 (1)

Distance Tables

Another representation for the constraints of ξ

$$\xi_1 \begin{cases} 0: a; \\ 1: b \{\tau_{01} \leq 5\}; \\ 2: c \{\tau_{02} \leq 4\}; \\ 3: f. \end{cases}$$

 \mathcal{D}^{ξ_1}

$$I_{01} = 0$$
 $I_{01} = 5$

Stable Distance Tables

A distance table of size *n* is *stable* iff

- $I_{ij} \leq h_{ij}$, for all $0 \leq i < j < n$
- for all $0 \le i < j < k < n$,

$$l_{ij} + l_{jk} \le l_{ik} \le \left\{ \begin{array}{c} l_{ij} + h_{jk} \\ h_{ij} + l_{jk} \end{array} \right\} \le h_{ik} \le h_{ij} + h_{jk}$$
 (2)

Stable Distance Tables

$$\xi_1 \qquad \begin{array}{|c|c|} \hline 0: & a; \\ 1: & b \ \{\tau_{01} \leq 5\}; \\ 2: & c \ \{\tau_{02} \leq 4\}; \\ 3: & f \ . \end{array}$$

$$\mathcal{D}^{\xi_1}$$
 is not stable $h_{01} + l_{12} \le h_{02}$ $5 + 0 \le 4$ $l_{01} + h_{12} \le h_{02}$ $0 + \infty \le 4$

\mathcal{D}^{ξ_1}		1	2	3
	0	(0, 5)	(0, 4)	$(0, \infty)$
	1		$(0, \infty)$	$(0, \infty)$
	2			$(0, \infty)$

Stabilizing Distance Tables

$$I_{ij} + I_{jk} \le I_{ik} \le \left\{ \begin{array}{l} I_{ij} + h_{jk} \\ h_{ij} + I_{jk} \end{array} \right\} \le h_{ik} \le h_{ij} + h_{jk}$$
 (2)

$$I_{ij} + I_{jk} > I_{ik} \longrightarrow I_{ik} := I_{ij} + I_{jk}$$
 (R1)

$$I_{ik} > I_{ij} + h_{jk} \longrightarrow I_{ij} := I_{ik} - h_{jk}$$
 (R2)

$$I_{ik} > h_{ij} + I_{jk} \longrightarrow I_{jk} := I_{ik} - h_{ij}$$
 (R3)

$$I_{ij} + h_{jk} > h_{ik} \longrightarrow h_{jk} := h_{ik} - I_{ij}$$
 (R4)

$$h_{ij} + I_{jk} > h_{ik} \longrightarrow h_{ij} := h_{ik} - I_{jk}$$
 (R5)

$$h_{ik} > h_{ij} + h_{jk} \longrightarrow h_{ik} := h_{ij} + h_{jk}$$
 (R6)

Apply iteratively!

- Low values increase and high values decrease.
- Termination: either (2) is satisfied or table becomes invalid i.e., $l_{ij} > h_{ij}$, for some i < j.

Stable Distance Tables

$$\xi_1 \qquad \begin{array}{|c|c|}\hline 0: & a; \\ 1: & b \ \{\tau_{01} \leq 5\}; \\ 2: & c \ \{\tau_{02} \leq 4\}; \\ 3: & f \ . \end{array}$$

$$\mathcal{D}^{\xi_1}$$
 is not stable $h_{01} + l_{12} \le h_{02}$
 $5 + 0 \le 4$
 $h_{01} := h_{02} - l_{12} = 4 - 0$
 $l_{01} + h_{12} \le h_{02}$
 $l_{02} + 0 \le 4$
 $l_{01} := h_{02} - l_{01} = 4 - 0$

\mathcal{D}^{ξ_1}		1	2	3
	0	(0, 5)	(0, 4)	$(0, \infty)$
	1		$(0, \infty)$	$(0, \infty)$
	2			$(0, \infty)$
$\mathcal{D}_{m{s}}^{\xi_1}$		1	2	3
$\mathcal{D}_{s}^{\xi_{1}}$	0	(0, <mark>4</mark>)	2 (0, 4)	
$\mathcal{D}_{s}^{\xi_{1}}$	0	1 (0, 4)	_	3

Properties of Stable Distance Tables

- The stable distance table is unique for a given scenario.
- If \mathcal{D}^{ξ} is stable, then each constraint in the table is tight:

$$I_{ij} = m_{ij}^{\xi}$$
 and $h_{ij} = M_{ij}^{\xi}$.

- A stable table includes all the constraints that are implied by the initial set of constraints.
- Semantically-equivalent scenarios have the same stable distance table.

Optimized Scenarios

- Minimal set of constraints
- Removal of any of the constraints would change the semantics

Explicit Constraints

If $\xi = (\mathcal{E}, \mathcal{C})$ is an optimized scenario, then the members of \mathcal{C} are the explicit constraints.

$$\eta \quad \begin{bmatrix}
0: a; \\
1: b \{\tau_{01} \ge 6\}; \\
2: c \{\tau_{02} \le 8, \tau_{12} \ge 1\}.
\end{bmatrix}$$

$$\begin{array}{c|c}
1 & 2 \\
\hline
0 & (6, 7) & (7, 8) \\
1 & (1, 2)
\end{array}$$

- $\mathcal{D}_{s}^{\eta} = \{ \tau_{01} \geq 6, \tau_{01} \leq 7, \tau_{02} \geq 7, \tau_{02} \leq 8, \tau_{12} \geq 1, \tau_{12} \leq 2 \}.$
- $C = \{\tau_{01} \ge 6, \tau_{02} \le 8, \tau_{12} \ge 1\}$ is the set of explicit constraints of η .

Motivation

- ξ and η :
 - two scenarios of length n with the same sequence of events, \mathcal{E}
 - $\forall_{0 \leq i < j < n} I_{ii}^{\xi} \cap I_{ii}^{\eta} \neq \emptyset$ (all intervals intersect)

Intersection

- The *intersection* of ξ and η ($\xi \cap \eta$)
 - a scenario whose sequence of events is \mathcal{E} and $\mathcal{D}^{\xi \cap \eta}[i,j] = (\max(m_{ii}^{\xi},m_{ii}^{\eta}),\min(M_{ii}^{\xi},M_{ii}^{\eta}))$
 - $\bullet \ \llbracket \xi \cap \eta \rrbracket = \llbracket \xi \rrbracket \cap \llbracket \eta \rrbracket$

For example:

$$\begin{pmatrix} (& (& \longrightarrow) \\ m_{ii}^{\xi} & m_{ij}^{\eta} & M_{ii}^{\xi} & M_{ii}^{\xi} \end{pmatrix}$$

Motivation

$$[\![\xi\cap\eta]\!]=[\![\xi]\!]\cap[\![\eta]\!]$$

For union, it is not always the case that

$$[\![\xi\cup\eta]\!]=[\![\xi]\!]\cup[\![\eta]\!]$$

Which makes it more interesting!

- ξ and η :
 - two scenarios of length n with the same sequence of events, \mathcal{E}
 - $\forall_{0 \leq i < j < n} I_{ii}^{\xi} \cap I_{ii}^{\eta} \neq \emptyset$ (all intervals intersect)
- The *combination* (quasi-union) of ξ and η ($\xi \cup \eta$)
 - ullet a scenario whose sequence of events is ${\mathcal E}$ and
 - $\mathcal{D}^{\xi \uplus \eta}[i,j] = (\min(m_{ii}^{\xi}, m_{ii}^{\eta}), \max(M_{ii}^{\xi}, M_{ii}^{\eta}))$

For example:

Combination (Quasi-union): Example

$$\begin{cases} 0: a; \\ 1: b \{\tau_{01} \le 4\}; \\ 2: c. \end{cases}$$

$$\eta = \begin{cases} 0: a; \\ 1: b; \\ 2: c \{\tau_{02} \geq 7\}. \end{cases}$$

$$\xi \uplus \eta$$
 0: a ;
1: b ;
2: c .

$$\begin{array}{c|cccc} & 1 & 2 \\ \hline 0 & (0,4) & (0,\infty) \\ 1 & & (0,\infty) \end{array}$$

$$\begin{array}{c|cccc}
 & 1 & 2 \\
\hline
0 & (0, \infty) & (7, \infty) \\
1 & & (0, \infty)
\end{array}$$

$$\begin{array}{c|cccc}
 & 1 & 2 \\
\hline
0 & (0, \infty) & (0, \infty) \\
1 & & (0, \infty)
\end{array}$$

```
 \llbracket \xi \rrbracket \cup \llbracket \eta \rrbracket \subseteq \llbracket \xi \uplus \eta \rrbracket.  What about  \llbracket \xi \uplus \eta \rrbracket \subseteq \llbracket \xi \rrbracket \cup \llbracket \eta \rrbracket ?
```

Zigzagging Behaviours

- ξ and η : two consistent scenarios, such that
- $\xi \uplus \eta$ is defined.

$$\begin{split} & \llbracket \xi \uplus \eta \rrbracket = \llbracket \xi \rrbracket \cup \llbracket \eta \rrbracket \cup \mathcal{Z}(\xi, \eta), \text{ where } \\ & \llbracket \xi \rrbracket \cap \mathcal{Z}(\xi, \eta) = \emptyset \text{ and } \\ & \llbracket \eta \rrbracket \cap \mathcal{Z}(\xi, \eta) = \emptyset. \end{split}$$

We call members of $\mathcal{Z}(\xi, \eta)$ zigzagging behaviours.

Zigzagging Behaviours

For example:

$$t_{ij} \in I_{ij}^{\xi} \setminus I_{ij}^{\eta}$$

$$t_{kl} \in I_{kl}^{\eta} \setminus I_{kl}^{\xi}$$

 ξ and η : two scenarios of length n, $\xi \cup \eta$ defined.

If behaviour $\mathcal{B}^z \in \mathcal{Z}(\xi, \eta)$ is such that $t_{ii}^{\mathcal{B}^z} \in I_{ii}^{\eta} \setminus I_{kl}^{\xi}$, $t_{kl}^{\mathcal{B}^z} \in I_{kl}^{\eta} \setminus I_{kl}^{\eta}$ $(i \neq k \lor j \neq l)$

Then we say \mathcal{B}^z zigzags *through ij* and *kl*.

Zigzagging Behaviours: Example

$$\begin{cases} 0: a; \\ 1: b \{ \tau_{01} \leq 4 \}; \\ 2: c. \end{cases}$$

$$\eta \begin{vmatrix} 0 : a; \\ 1 : b; \\ 2 : c \{\tau_{02} \ge 7\} \ . \end{vmatrix}$$

$$\begin{array}{c|cccc} & 1 & 2 \\ \hline 0 & (0, 4) & (0, \infty) \\ 1 & & (0, \infty) \end{array}$$

$$\begin{array}{c|cccc}
 & 1 & 2 \\
\hline
0 & (0, \infty) & (7, \infty) \\
1 & (0, \infty)
\end{array}$$

$$\mathcal{B}^z = (a,0)(b,5)(c,6) \ t_{01} = 5 \in I_{01}^{\eta} \setminus I_{01}^{\xi} \ t_{02} = 6 \in I_{01}^{\xi} \setminus I_{01}^{\eta}$$

 \mathcal{B}^z zigzags through 01 and 02.

Union

If
$$\mathcal{Z}(\xi,\eta) = \emptyset$$
, $\xi \uplus \eta$ becomes the *union* of ξ and η . $[\![\xi \cup \eta]\!] = [\![\xi]\!] \cup [\![\eta]\!]$

Union: Example

$$\gamma = \xi \cup \eta: [\![\gamma]\!] = [\![\xi]\!] \cup [\![\eta]\!] \\
\xi \begin{vmatrix}
0 : a; \\
1 : b; \\
2 : c \{\tau_{12} \le 6\}; \\
3 : d \{\tau_{03} \ge 3\}.
\end{vmatrix}$$

$$\eta \begin{vmatrix} 0 : a; \\ 1 : b \{ \tau_{01} \le 4 \}; \\ 2 : c \{ \tau_{02} \le 6 \}; \\ 3 : d. \end{vmatrix}$$

$$\xi \cup \eta \begin{vmatrix} 0 : a; \\ 1 : b; \\ 2 : c \{\tau_{12} \le 6\}; \\ 3 : d. \end{vmatrix}$$

	1	2	3
0	$(0, \infty)$	$(0, \infty)$	$(3, \infty)$
1		(0, 6)	$(0, \infty)$
2			$(0, \infty)$

	1	2	3
0	(0, 4)	(0, 6)	$(0, \infty)$
1		(0, 6)	$(0, \infty)$
2			$(0, \infty)$

Theorem

Let $\xi = (\mathcal{E}, \mathcal{C}_1)$ and $\eta = (\mathcal{E}, \mathcal{C}_2)$ be two optimized scenarios of length n such that $\xi \cup \eta$ is defined.

If $\mathcal{Z}(\xi,\eta) \neq \emptyset$, then, there exist

a constraint $\alpha \in C_1$ of the form $\tau_{ij} \sim$ a and

a constraint $\beta \in \mathcal{C}_2$ of the form $\tau_{kl} \sim \mathsf{b}$ (ij $\neq kl$)

such that $\alpha \notin \mathcal{C}_2$ and $\beta \notin \mathcal{C}_1$.

Theorem: Example

$$\xi \begin{vmatrix} 0 : a; \\ 1 : b \{ \tau_{01} \le 4 \}; \\ 2 : c. \end{vmatrix}$$

$$\eta egin{array}{l} 0:a; \ 1:b; \ 2:c\{ au_{02}\geq 7\} \ . \end{array}$$

$$\mathcal{B}^{z} = (a,0)(b,5)(c,6)$$

$$t_{01} = 5 \in I_{01}^{\eta} \setminus I_{01}^{\xi}$$

$$t_{02} = 6 \in I_{01}^{\xi} \setminus I_{01}^{\eta}$$

$$\begin{array}{c|cccc} & 1 & 2 \\ \hline 0 & (0,4) & (0,\infty) \\ 1 & & (0,\infty) \end{array}$$

$$\begin{array}{c|cccc}
 & 1 & 2 \\
\hline
0 & (0, \infty) & (7, \infty) \\
1 & (0, \infty)
\end{array}$$

$$\mathcal{Z}(\xi, \eta) \neq \emptyset$$

therefore,
 $\alpha = \tau_{01} < 4, \beta = \tau_{02} > 7$

Recall the theorem:

Let $\xi = (\mathcal{E}, \mathcal{C}_1)$ and $\eta = (\mathcal{E}, \mathcal{C}_2)$ be two optimized scenarios of length n such that $\xi \cup \eta$ is defined.

If $\mathcal{Z}(\xi,\eta) \neq \emptyset$, then, there exist

a constraint $\alpha \in C_1$ of the form $\tau_{ij} \sim a$ and

a constraint $\beta \in \mathcal{C}_2$ of the form $\tau_{kl} \sim b$ ($ij \neq kl$)

such that $\alpha \notin C_2$ and $\beta \notin C_1$.

The theorem provides a sufficient condition for the existence of union: if $\xi = (\mathcal{E}, \mathcal{C}_1)$ and $\eta = (\mathcal{E}, \mathcal{C}_2)$ do not contain such an α and β , then $\mathcal{Z}(\xi, \eta) = \emptyset$.

Recall the theorem:

Let $\xi = (\mathcal{E}, \mathcal{C}_1)$ and $\eta = (\mathcal{E}, \mathcal{C}_2)$ be two optimized scenarios of length n such that $\xi \cup \eta$ is defined.

If $\mathcal{Z}(\xi, \eta) \neq \emptyset$, then, there exist

a constraint $\alpha \in \mathcal{C}_1$ of the form $\tau_{ij} \sim a$ and

a constraint $\beta \in C_2$ of the form $\tau_{kl} \sim b$ ($ij \neq kl$)

such that $\alpha \notin C_2$ and $\beta \notin C_1$.

But the condition is not necessary, in general: if ξ and η contain such an α and β , then $\mathcal{Z}(\xi, \eta)$ might be empty.

But the condition is not necessary, in general: if ξ and η contain such an α and β , then $\mathcal{Z}(\xi,\eta)$ might be empty.

$$\xi \begin{array}{|c|c|} \hline 0:a; \\ 1:b; \\ 2:c \{\tau_{02} \geq 7\} \end{array}.$$

$$\xi \begin{bmatrix} 0 : a; & & & 1 & 2 \\ 1 : b; & & & 0 & (0, \infty) & (7, \infty) \\ 2 : c \{\tau_{02} \ge 7\} . & & 1 & (0, \infty) \end{bmatrix}$$

$$\alpha = \tau_{02} \ge 7$$
, in ξ
 $\beta = \tau_{01} < 8$, in η

However, no behaviour in $\mathcal{Z}(\xi, \eta)$.

z_pairs

 ξ and η : $\xi \not\subseteq \eta$, $\eta \not\subseteq \xi$ and $\xi \uplus \eta$ defined $\alpha = \tau_{ij} \sim a$ in ξ (not in η) $\beta = \tau_{kl} \sim b$ in η (not in ξ) ($i \neq k \lor j \neq l$) α and β form a z_pair if one of the following conditions holds:

0
$$0 \le k \le i < j \le l < n$$
 and
(a) $\alpha = \tau_{ij} \ge a$, $\beta = \tau_{kl} \ge b$, $m_{ii}^{\eta} < a$, $m_{kl}^{\xi} < b$, or

z_pairs

 ξ and η : $\xi \not\subseteq \eta$, $\eta \not\subseteq \xi$ and $\xi \uplus \eta$ defined $\alpha = \tau_{ij} \sim \mathbf{a}$ in ξ (not in η) $\beta = \tau_{kl} \sim \mathbf{b}$ in η (not in ξ) ($i \neq k \lor j \neq l$) α and β form a \mathbf{z} pair if one of the following conditions holds:

- $0 \le k \le i < j \le l < n$ and
 - (a) $\alpha = \tau_{ij} \geq a$, $\beta = \tau_{kl} \geq b$, $m_{ij}^{\eta} < a$, $m_{kl}^{\xi} < b$, or
 - (b) $\alpha = \tau_{ij} \geq a$, $\beta = \tau_{kl} \leq b$, $m_{ij}^{\eta} < a$, $b < M_{kl}^{\xi}$, and additionally $M_{ki}^{\xi \uplus \eta} + a + M_{jl}^{\xi \uplus \eta} > b$, or
 - (c) $\alpha = \tau_{ij} \leq a$, $\beta = \tau_{kl} \geq b$, $a < M_{ij}^{\eta}$, $m_{kl}^{\xi} < b$, and additionally $m_{ki}^{\xi \cup \eta} + a + m_{il}^{\xi \cup \eta} < b$, or
 - (d) $\alpha = \tau_{ij} \leq a$, $\beta = \tau_{kl} \leq b$, $a < M_{ij}^{\eta}$, $b < M_{kl}^{\xi}$.

z_pairs

 ξ and η : $\xi \not\subseteq \eta$, $\eta \not\subseteq \xi$ and $\xi \uplus \eta$ defined

 $\alpha = \tau_{ij} \sim a$ in ξ (not in η) $\beta = \tau_{kl} \sim b$ in η (not in ξ) ($i \neq k \lor j \neq l$) α and β form a z pair if one of the following conditions holds:

- $0 \le i < k < j < l < n$ and
 - (a) $\alpha = \tau_{ij} \geq a$, $\beta = \tau_{kl} \geq b$, $m_{ij}^{\eta} < a$, $m_{kl}^{\xi} < b$, and additionally $m_{ij}^{\xi \uplus \eta} a < b m_{kj}^{\xi \uplus \eta}$, or
 - (b) $\alpha = \tau_{ij} \geq \mathbf{a}$, $\beta = \tau_{kl} \leq \mathbf{b}$, $m_{ij}^{\eta} < \mathbf{a}$, $\mathbf{b} < M_{kl}^{\xi}$, and additionally $\mathbf{a} + M_{il}^{\xi \sqcup \eta} > m_{ik}^{\xi \sqcup \eta} + \mathbf{b}$, or
 - (c) $\alpha = \tau_{ij} \leq \mathbf{a}$, $\beta = \tau_{kl} \geq \mathbf{b}$, $a < M_{ij}^{\eta}$, $m_{kl}^{\xi} < \mathbf{b}$, and additionally $a + m_{il}^{\xi \uplus \eta} < M_{ik}^{\xi \uplus \eta} + \mathbf{b}$, or
 - (d) $\alpha = \tau_{ij} \leq \mathbf{a}$, $\beta = \tau_{kl} \leq \mathbf{b}$, $a < M_{ij}^{\eta}$, $b < M_{kl}^{\xi}$, and additionally $M_{il}^{\xi \uplus \eta} a > b M_{ki}^{\xi \uplus \eta}$.

z_pairs

 ξ and η : $\xi \not\subseteq \eta$, $\eta \not\subseteq \xi$ and $\xi \uplus \eta$ defined $\alpha = \tau_{ij} \sim a$ in ξ (not in η) $\beta = \tau_{kl} \sim b$ in η (not in ξ) ($i \neq k \lor j \neq l$) α and β form a z_pair if one of the following conditions holds:

- **(4)** $0 \le i < j \le k < l < n$ and
 - (a) $\alpha = \tau_{ij} \geq a$, $\beta = \tau_{kl} \geq b$, $m_{ij}^{\eta} < a$, $m_{kl}^{\xi} < b$, or
 - (b) $\alpha = \tau_{ij} \geq a$, $\beta = \tau_{kl} \leq b$, $m_{ij}^{\eta} < a$, $b < M_{kl}^{\xi}$, or
 - (c) $\alpha = \tau_{ij} \leq a$, $\beta = \tau_{kl} \geq b$, $a < M_{ij}^{\eta}$, $m_{kl}^{\xi} < b$, or
 - (d) $\alpha = \tau_{ij} \leq a$, $\beta = \tau_{kl} \leq b$, $a < M_{ij}^{\eta}$, $b < M_{kl}^{\xi}$.

z_pairs

The conditions capture all the possibilities for $I_{ij}^{\eta} \setminus I_{ij}^{\xi} \neq \emptyset$ and $I_{kl}^{\xi} \setminus I_{kl}^{\eta} \neq \emptyset$, to guarantee "there is room" for behaviours to zigzag through ij and kl.

The *additional* conditions specify certain relations that must hold between various minima and maxima in ξ and η for there to be zigzagging behaviours.

z_pair Might Not Be Between Explicit Constraints

- $\tau_{02} \le 2$ of ξ and $\tau_{13} \ge 4$ of η are different explicit constraints.

z_pair Between Implied Constraints

 $\tau_{02} \geq 1$ of ξ (an *implied* constraint) and $\tau_{13} \geq 4$ of η form a z_pair .

A Necessary Condition for the Non-existence of Union

```
no union \equiv zigzagging \Rightarrow z_pair
```

Theorem

```
\xi and \eta: two scenarios of length n, \xi \not\subseteq \eta and \eta \not\subseteq \xi, \xi \uplus \eta is defined
```

```
If \beta^z \in \mathcal{Z}(\xi, \eta) zigzags through some ij and kl, then there exist \alpha = \tau_{ij} \sim a in \xi and \beta = \tau_{kl} \sim b in \eta such that \alpha and \beta form a z pair.
```

Consequence of the Theorem

no union \equiv zigzagging \Rightarrow z_pair

if there is no *z_pair* between scenarios ξ and η , then $\mathcal{Z}(\xi, \eta) = \emptyset$, therefore $\xi \cup \eta$ exists.

A Sufficient Condition for the Non-existence of Union

 $z_pair \Rightarrow zigzagging \equiv no union$

Theorem

 ξ and η : two scenarios of length n, $\xi \not\subseteq \eta$, $\eta \not\subseteq \xi$ $\xi \uplus \eta$ is defined

If there are

 $\alpha = \tau_{ij} \sim a$ in ξ and $\beta = \tau_{kl} \sim b$ in η such that α and β form a z_pair, then

there is a $\mathcal{B}^z \in \mathcal{Z}(\xi, \eta)$, such that \mathcal{B}^z zigzags through ij and kl.

The Consequence of the Theorem

$$z_pair \Rightarrow zigzagging \equiv no union$$

if ξ and η have constraints that form a z_pair , then $\xi \cup \eta$ does not exist.

Example

$$\begin{array}{|c|c|c|c|c|}\hline 0:a; & & & & 1 & 2 \\ 1:b & \{\tau_{01} \geq 3\}; & & 0 & (3,7) & (3,7) \\ 2:c & \{\tau_{02} \leq 7\}. & & 1 & (0,4) & & 2:c & \{\tau_{12} \geq 4\}. \\\hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|}
\hline
0: a; & & & & \\
1: b; & & & \\
2: c & \{\tau_{12} \geq 4\} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

$$\xi \uplus \eta egin{bmatrix} 0:a; \ 1:b; \ 2:c \ \{ au_{02} \geq 3\} \ . \end{bmatrix}$$

$$egin{array}{|c|c|c|c|c|} & 1 & 2 \\ \hline 0 & (0,\infty) & (3,\infty) \\ 1 & & (0,\infty) \\ \hline \end{array}$$

$$\mathcal{B}^z = (a,0)(b,1)(c,4) \in \mathcal{Z}(\xi,\eta)$$
:
 $t_{01}^{\mathcal{B}^z} = 1 - 0 = 1 \notin I_{0}^{\xi}$ and $t_{12}^{\mathcal{B}^z} = 4 - 1 = 3 \notin I_{12}^{\eta}$.

According to the theorem z pair exist: $\alpha = \tau_{01} \ge 3$ in ξ and $\beta = \tau_{12} \ge 4$ in η .

Union does not exist.

Summary of the Results

The existence of z_pairs is both a necessary and sufficient condition for the non-existence of union:

 $z_pair \equiv zigzagging \equiv no union$

Therefore:

no $z_pair \equiv union exists$

Conclusions

- We investigate the conditions under which $[\![\xi]\!] \cup [\![\eta]\!]$ can be represented by a single scenario, namely the union $\xi \cup \eta$.
- Our investigation reveals that in the presence of zigzagging behaviours the constraints of ξ and η must satisfy certain additional criteria.
- Based on this observation we formulate a sufficient and necessary condition for the existence of the union.

Thank You!