
Brzozowski’s Algorithm for Automata
Minimization Verified in Coq

Filipe Ramos1

ofiliperamos@gmail.com

Karina Girardi Roggia1

karina.roggia@udesc.br

Rafael Castro G. Silva2

rasi@di.ku.dk

1Universidade do Estado de Santa Catarina
2University of Copenhagen

2024



Introduction

• Why minimize DFA?
• To reduce memory usage
• To simplify the automaton for reasoning
• To obtain the canonical DFA for a given

regular language
• Table-filling algorithm [8]
• Brzozowski’s algorithm [5]

• Simpler to understand
• Easier to implement
• Despite O(2n), it frequently behaves

well in practice [3]
• Lack of correctness proofs of the

algorithm in Coq



Introduction

Coq Proof Assistant [2]:
• Formal proof management system
• Tactics allowing manageable steps
• Automation for simpler proofs
• Broad user community



Introduction

Proof goals:
• reversal produces an automaton that accepts the strings

reversed from the source language;
• after reversal and determinization, the paths of the new

automaton connect set states that have original states
connected by reverse paths;

• the minimized automaton is deterministic;
• the language of the minimized DFA is the same as that of the

input automaton;
• all constructed states are reachable and distinguishable.



Brzozowski’s Algorithm

0 1 21 0

0



Brzozowski’s Algorithm

0 1 21 0

0



Brzozowski’s Algorithm

[0] [1;2] [2]
1 0

0



Brzozowski’s Algorithm

[0] [1;2] [2]
1 0

0



Brzozowski’s Algorithm

[[0]] [[1;2]] [[1;2];[2]]1 0

0



Finite Automata in Coq

⟨Q,Σ, δ, I, F⟩

Context {State Symbol : Type}.

Record NFA := {
states : list State;
alphabet : list Symbol;
transition : State -> Symbol ->

list State;
start_states : list State;
accept_states : list State

}.

• Need for predicates
• Difficult function handling in definitions and

proofs
• Impossible to apply induction directly
• Complex to apply transformations (e.g.

reversal)



Finite Automata in Coq

⟨Q,Σ, δ, I, F⟩

Variant NFA_comp :=
| state (q:State)
| symbol (a:Symbol)
| start (q:State)
| accept (q:State)
| transition (q1:State)

(a:Symbol) (q2:State).

Definition NFA := list NFA_comp.

• Less predicates
• Transitions computed using pattern-matching

functions (e.g. transitionf)
• Simple induction
• Easy to transform through pattern-matching



Finite Automata in Coq

0 1 21 0

0

• [state 0; state 1; state 2; start 0; accept 2;
transition 0 1 1; transition 1 0 2; transition 2 0 2]

• [start 0; accept 2; transition 0 1 1; transition 1 0 2;
transition 2 0 2]



Deterministic Finite Automata

Variable nfa : NFA.

Definition start_singleton := ∃ q, In q (start_sts nfa) ∧
∀ q1 q2, In q1 (start_sts nfa) → In q2 (start_sts nfa) →
q1 = q2.

Definition transitionf_det := ∀ q a q1 q2,
let s := transitionf [q] a in In q1 s → In q2 s → q1 = q2.

Definition is_dfa := start_singleton ∧ transitionf_det.

• Same representation for both NFA and DFA
• NFA ↔ DFA conversion facilitated



Automaton Reversal in Coq

1 start q1 becomes accept q1;
2 accept q2 becomes start q2;
3 transition q3 a q4 becomes transition q4 a q3.



Reversed Language

Inductive path (g:NFA) : State → State → Word → Prop :=
| path_nil q : path g q q nil
| path_trans q1 q2 q3 a w : In (transition q1 a q2) g →

path g q2 q3 w → path g q1 q3 (a::w).

path g q1 q2 w ⇔ path gR q2 q1 wR

L(gR) = {wR|w ∈ L(g)}

L(gmin) = {(wR)R|w ∈ L(g)}



Automaton Determinization in Coq

1 start (start_states g') ::
transition Q a (transitionf g' Q a)

2 State list normalization
• [0; 1; 2] ≡ [1; 2; 0]
• Reduction of redundancy
• Consistency in state representation

transitionf g' [0; 1; 2] a = [1; 2; 0]
3 Accepting states appending

• The previously generated states with an accepting state
4 Removal of unreachable states

• Pumping lemma



Determinization Correctness

By applying induction over the input automaton, we can obtain:
• Only one start state is generated
• transitionf (det g’) [Q1] a = [Q2; ...; Q2]

since only one transition Q1 a Q2 is generated



Proof of Equivalence

q1 q2

w

w

q1 ∈ Q ∧ q2 ∈ ext_transitionf g’ [q1] w ⇔
q2 ∈ Q’ ∈ ext_transitionf (det g’) [Q] w



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∈ accept_sts (det gR) ⇔ Q’2 ∈ accept_sts (det gR)

for all w.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q01 ⇔ Q’2 ∋ q02

for all w and some start states q01 and q02 in g.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0

for all w and the start state q0 of g, assuming g is deterministic.



Minimization Correctness

q2 q1

wR

w

Q ∋ q2 ∈ ext_transitionf g [q1] wR ⇔
q1 ∈ Q’ ∈ ext_transitionf (det gR) [Q] w



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0
ext_transitionf g [q0] wR ⊆ Q1 ⇔
ext_transitionf g [q0] wR ⊆ Q2

for all w and the start state q0 of g, assuming g is deterministic.

Which means every reachable state of g is in Q1 iff it is in Q2.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0
ext_transitionf g [q0] wR ⊆ Q1 ⇔
ext_transitionf g [q0] wR ⊆ Q2

for all w and the start state q0 of g, assuming g is deterministic.

Which means every state of g is in Q1 iff it is in Q2, assuming
all states of g are reachable. Thus, Q1 = Q2 as we wanted to
prove.



Minimization Correctness

Since det gR is deterministic and all its states are
reachable, det (det gR)R is minimal for any finite
automaton g.
Qed!



Conclusion

• Finite automata as lists!
• Proofs guided by tactics with well-defined syntax and step-by-step

procedures
• Brzozowski’s algorithm verified with Coq’s standard library
• We have shown it works for both NFA and DFA, with multiple start

states
• Approximately 2400 lines of proofs, 580 lines of specifications



References

Athalye, A.: CoqIOA: a formalization of IO automata in the Coq
proof assistant. Ph.D. thesis, Massachusetts Institute of Technology
(2017), https://dspace.mit.edu/handle/1721.1/112831

Bertot, Y., Castran, P.: Interactive Theorem Proving and Program
Development: Coq’Art The Calculus of Inductive Constructions.
Springer Publishing Company, Incorporated, 1st edn. (2010)

Bonchi, F., Bonsangue, M.M., Rutten, J.J., Silva, A.: Brzozowski’s
algorithm (co) algebraically. In: Logic and Program Semantics, pp.
12–23. Springer (2012), https://link.springer.com/chapter/
10.1007/978-3-642-29485-3_2

Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Logical
Methods in Computer Science 8 (2012),
https://lmcs.episciences.org/1043

https://dspace.mit.edu/handle/1721.1/112831
https://link.springer.com/chapter/10.1007/978-3-642-29485-3_2
https://link.springer.com/chapter/10.1007/978-3-642-29485-3_2
https://lmcs.episciences.org/1043


References

Brzozowski, J., Tamm, H.: Theory of átomata. In: Theoretical
Computer Science. vol. 539, pp. 13–27. Elsevier (2014),
https://www.sciencedirect.com/science/article/pii/
S0304397514002953
Cassandras, C.G., Lafortune, S.: Introduction to discrete event
systems. Springer Science+Business Media, New York, 2 edn. (2008)

Doczkal, C., Kaiser, J.O., Smolka, G.: A constructive theory of
regular languages in Coq. In: International Conference on Certified
Programs and Proofs. pp. 82–97. Springer (2013), https://link.
springer.com/chapter/10.1007/978-3-319-03545-1_6

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to
automata theory, languages, and computation. Pearson/Addison
Wesley, Boston, 3 edn. (2006)

Jan, H.: Proof of Brzozowski’s algorithm for DFA minimization
(2019), https://cs.stackexchange.com/questions/105574/
proof-of-brzozowskis-algorithm-for-dfa-minimization

https://www.sciencedirect.com/science/article/pii/S0304397514002953
https://www.sciencedirect.com/science/article/pii/S0304397514002953
https://link.springer.com/chapter/10.1007/978-3-319-03545-1_6
https://link.springer.com/chapter/10.1007/978-3-319-03545-1_6
https://cs.stackexchange.com/questions/105574/proof-of-brzozowskis-algorithm-for-dfa-minimization
https://cs.stackexchange.com/questions/105574/proof-of-brzozowskis-algorithm-for-dfa-minimization


References

Paulson, L.C.: A formalisation of finite automata using hereditarily
finite sets. In: International Conference on Automated Deduction.
pp. 231–245. Springer (2015), https://link.springer.com/
chapter/10.1007/978-3-319-21401-6_15

Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M.,
Greenberg, M., Hriţcu, C., Sjöberg, V., Yorgey, B.: Logical
Foundations, vol. 1. UPenn CIS, Pennsylvania, 6.6 edn. (2024)

Ramos, F.: Prova da minimização de autômatos finitos
determinísticos pelo algoritmo de brzozowski assistida por
computador (2021),
https://pergamumweb.udesc.br/acervo/152736, supervisors:
Karina Girardi Roggia, Rafael Castro G. Silva

https://link.springer.com/chapter/10.1007/978-3-319-21401-6_15
https://link.springer.com/chapter/10.1007/978-3-319-21401-6_15
https://pergamumweb.udesc.br/acervo/152736


Brzozowski’s Algorithm for Automata
Minimization Verified in Coq

Filipe Ramos1

ofiliperamos@gmail.com

Karina Girardi Roggia1

karina.roggia@udesc.br

Rafael Castro G. Silva2

rasi@di.ku.dk

1Universidade do Estado de Santa Catarina
2University of Copenhagen

2024


