
Brzozowski’s Algorithm for Automata
Minimization Verified in Coq

Filipe Ramos1

ofiliperamos@gmail.com

Karina Girardi Roggia1

karina.roggia@udesc.br

Rafael Castro G. Silva2

rasi@di.ku.dk

1Universidade do Estado de Santa Catarina
2University of Copenhagen

2024



Introduction

• Why minimize DFA?
• To reduce memory usage
• To simplify the automaton for reasoning
• To obtain the canonical DFA for a given

regular language
• Table-filling algorithm [8]
• Brzozowski’s algorithm [5]

• Simpler to understand
• Easier to implement
• Despite O(2n), it frequently behaves

well in practice [3]
• Lack of correctness proofs of the

algorithm in Coq



Introduction

Coq Proof Assistant [2]:
• Formal proof management system
• Tactics allowing manageable steps
• Automation for simpler proofs
• Broad user community



Introduction

Proof goals:
• reversal produces an automaton that accepts the strings

reversed from the source language;
• after reversal and determinization, the paths of the new

automaton connect set states that have original states
connected by reverse paths;

• the minimized automaton is deterministic;
• the language of the minimized DFA is the same as that of the

input automaton;
• all constructed states are reachable and distinguishable.
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Finite Automata in Coq

⟨Q,Σ, δ, I, F⟩

Context {State Symbol : Type}.

Record NFA := {
states : list State;
alphabet : list Symbol;
transition : State -> Symbol ->

list State;
start_states : list State;
accept_states : list State

}.

• Need for predicates
• Difficult function handling in definitions and

proofs
• Impossible to apply induction directly
• Complex to apply transformations (e.g.

reversal)



Finite Automata in Coq

⟨Q,Σ, δ, I, F⟩

Variant NFA_comp :=
| state (q:State)
| symbol (a:Symbol)
| start (q:State)
| accept (q:State)
| transition (q1:State)

(a:Symbol) (q2:State).

Definition NFA := list NFA_comp.

• Less predicates
• Transitions computed using pattern-matching

functions (e.g. transitionf)
• Simple induction
• Easy to transform through pattern-matching



Finite Automata in Coq

0 1 21 0

0

• [state 0; state 1; state 2; start 0; accept 2;
transition 0 1 1; transition 1 0 2; transition 2 0 2]

• [start 0; accept 2; transition 0 1 1; transition 1 0 2;
transition 2 0 2]



Deterministic Finite Automata

Variable nfa : NFA.

Definition start_singleton := ∃ q, In q (start_sts nfa) ∧
∀ q1 q2, In q1 (start_sts nfa) → In q2 (start_sts nfa) →
q1 = q2.

Definition transitionf_det := ∀ q a q1 q2,
let s := transitionf [q] a in In q1 s → In q2 s → q1 = q2.

Definition is_dfa := start_singleton ∧ transitionf_det.

• Same representation for both NFA and DFA
• NFA ↔ DFA conversion facilitated



Automaton Reversal in Coq

1 start q1 becomes accept q1;
2 accept q2 becomes start q2;
3 transition q3 a q4 becomes transition q4 a q3.



Reversed Language

Inductive path (g:NFA) : State → State → Word → Prop :=
| path_nil q : path g q q nil
| path_trans q1 q2 q3 a w : In (transition q1 a q2) g →

path g q2 q3 w → path g q1 q3 (a::w).

path g q1 q2 w ⇔ path gR q2 q1 wR

L(gR) = {wR|w ∈ L(g)}

L(gmin) = {(wR)R|w ∈ L(g)}



Automaton Determinization in Coq

1 start (start_states g') ::
transition Q a (transitionf g' Q a)

2 State list normalization
• [0; 1; 2] ≡ [1; 2; 0]
• Reduction of redundancy
• Consistency in state representation

transitionf g' [0; 1; 2] a = [1; 2; 0]
3 Accepting states appending

• The previously generated states with an accepting state
4 Removal of unreachable states

• Pumping lemma



Determinization Correctness

By applying induction over the input automaton, we can obtain:
• Only one start state is generated
• transitionf (det g’) [Q1] a = [Q2; ...; Q2]

since only one transition Q1 a Q2 is generated



Proof of Equivalence

q1 q2

w

w

q1 ∈ Q ∧ q2 ∈ ext_transitionf g’ [q1] w ⇔
q2 ∈ Q’ ∈ ext_transitionf (det g’) [Q] w



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∈ accept_sts (det gR) ⇔ Q’2 ∈ accept_sts (det gR)

for all w.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q01 ⇔ Q’2 ∋ q02

for all w and some start states q01 and q02 in g.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0

for all w and the start state q0 of g, assuming g is deterministic.



Minimization Correctness

q2 q1

wR

w

Q ∋ q2 ∈ ext_transitionf g [q1] wR ⇔
q1 ∈ Q’ ∈ ext_transitionf (det gR) [Q] w



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0
ext_transitionf g [q0] wR ⊆ Q1 ⇔
ext_transitionf g [q0] wR ⊆ Q2

for all w and the start state q0 of g, assuming g is deterministic.

Which means every reachable state of g is in Q1 iff it is in Q2.



Minimization Correctness

Let Q1 and Q2 be two indistinguishable states in det gR:
ext_transitionf (det gR) [Q1] w = [Q’1; ...]
ext_transitionf (det gR) [Q2] w = [Q’2; ...]
Q’1 ∋ q0 ⇔ Q’2 ∋ q0
ext_transitionf g [q0] wR ⊆ Q1 ⇔
ext_transitionf g [q0] wR ⊆ Q2

for all w and the start state q0 of g, assuming g is deterministic.

Which means every state of g is in Q1 iff it is in Q2, assuming
all states of g are reachable. Thus, Q1 = Q2 as we wanted to
prove.



Minimization Correctness

Since det gR is deterministic and all its states are
reachable, det (det gR)R is minimal for any finite
automaton g.
Qed!



Conclusion

• Finite automata as lists!
• Proofs guided by tactics with well-defined syntax and step-by-step

procedures
• Brzozowski’s algorithm verified with Coq’s standard library
• We have shown it works for both NFA and DFA, with multiple start

states
• Approximately 2400 lines of proofs, 580 lines of specifications
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