Brzozowski's Algorithm for Automata Minimization Verified in Coq

Filipe Ramos¹ ofiliperamos@gmail.com Karina Girardi Roggia¹ karina.roggia@udesc.br Rafael Castro G. Silva² rasi@di.ku.dk

¹Universidade do Estado de Santa Catarina ²University of Copenhagen

2024

Introduction

- Why minimize DFA?
 - To reduce memory usage
 - To simplify the automaton for reasoning
 - To obtain the canonical DFA for a given regular language
- Table-filling algorithm [8]
- Brzozowski's algorithm [5]
 - Simpler to understand
 - Easier to implement
 - Despite $O(2^n)$, it frequently behaves well in practice [3]

イロト イポト イラト イラト

• Lack of correctness proofs of the algorithm in Coq

Introduction

Coq Proof Assistant [2]:

- Formal proof management system
- Tactics allowing manageable steps
- Automation for simpler proofs
- Broad user community

Introduction

Proof goals:

- reversal produces an automaton that accepts the strings reversed from the source language;
- after reversal and determinization, the paths of the new automaton connect set states that have original states connected by reverse paths;
- the minimized automaton is deterministic;
- the language of the minimized DFA is the same as that of the input automaton;
- all constructed states are reachable and distinguishable.

ヘロト ヘロト ヘヨト ヘヨト

Finite Automata in Coq


```
Context {State Symbol : Type}.
Record NFA := {
   states : list State;
   alphabet : list Symbol;
   transition : State -> Symbol ->
list State;
   start_states : list State;
   accept_states : list State
}.
```

- Need for predicates
- Difficult function handling in definitions and proofs

イロト 不得 トイヨト イヨト

- Impossible to apply induction directly
- Complex to apply transformations (e.g. reversal)

Finite Automata in Coq

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● �� ◆

Finite Automata in Coq

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

- [state 0; state 1; state 2; start 0; accept 2; transition 0 1 1; transition 1 0 2; transition 2 0 2]
- [start 0; accept 2; transition 0 1 1; transition 1 0 2; transition 2 0 2]

Deterministic Finite Automata

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Variable nfa : NFA.

Definition start_singleton := $\exists q$, In q (start_sts nfa) $\land \forall q1 q2$, In q1 (start_sts nfa) \rightarrow In q2 (start_sts nfa) $\rightarrow q1 = q2$.

Definition transitionf_det := \forall q a q1 q2, let s := transitionf [q] a in In q1 s \rightarrow In q2 s \rightarrow q1 = q2.

Definition is_dfa := start_singleton \land transitionf_det.

- Same representation for both NFA and DFA
- NFA \leftrightarrow DFA conversion facilitated

Automaton Reversal in Coq

イロト イポト イヨト イヨト

- start q1 becomes accept q1;
- 2 accept q2 becomes start q2;
- ③ transition q3 a q4 becomes transition q4 a q3.

Reversed Language

path g q1 q2 w \Leftrightarrow path g^R q2 q1 w^R

 $L(g^{R}) = \{w^{R} | w \in L(g)\}$

 $L(g_{\min}) = \{(w^R)^R | w \in L(g)\}$

Automaton Determinization in Coq

① start (start_states g') :: transition Q a (transitionf g' Q a)

- **2** State list normalization
 - $[0; 1; 2] \equiv [1; 2; 0]$
 - Reduction of redundancy
 - Consistency in state representation transitionf g' [0; 1; 2] a = [1; 2; 0]
- Accepting states appending
 - The previously generated states with an accepting state
- A Removal of unreachable states
 - Pumping lemma

Determinization Correctness

By applying induction over the input automaton, we can obtain:

- Only one start state is generated
- transitionf (det g') [Q1] a = [Q2; ...; Q2] since only one transition Q1 a Q2 is generated

Proof of Equivalence

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\begin{split} & q_1 \in \mathbb{Q} \land q_2 \in \texttt{ext_transitionf g' [q_1] w} \Leftrightarrow \\ & q_2 \in \mathbb{Q}' \in \texttt{ext_transitionf (det g') [Q] w} \end{split}$$

E

Let Q_1 and Q_2 be two indistinguishable states in det g^R : ext_transitionf (det g^R) $[Q_1]$ w = $[Q'_1; \ldots]$ ext_transitionf (det g^R) $[Q_2]$ w = $[Q'_2; \ldots]$ $Q'_1 \in accept_sts$ (det g^R) $\Leftrightarrow Q'_2 \in accept_sts$ (det g^R) for all w.

Let Q_1 and Q_2 be two indistinguishable states in det g^R : ext_transitionf (det g^R) $[Q_1] w = [Q'_1; \ldots]$ ext_transitionf (det g^R) $[Q_2] w = [Q'_2; \ldots]$ $Q'_1 \ni q 0_1 \Leftrightarrow Q'_2 \ni q 0_2$

for all w and some start states $q0_1$ and $q0_2$ in g.

<ロト < 同ト < ヨト < ヨト = ヨ

Let Q_1 and Q_2 be two indistinguishable states in det g^R : ext_transitionf (det g^R) $[Q_1] w = [Q'_1; ...]$ ext_transitionf (det g^R) $[Q_2] w = [Q'_2; ...]$ $Q'_1 \ni q0 \Leftrightarrow Q'_2 \ni q0$

for all w and the start state q0 of g, assuming g is deterministic.

・ロト ・ 一下 ・ ト ・ ト ・

Let Q_1 and Q_2 be two indistinguishable states in det g^R :

$$\begin{array}{l} \text{ext_transitionf (det g^R) } [\mathbb{Q}_1] \ \texttt{w} = [\mathbb{Q}'_1; \ \ldots] \\ \text{ext_transitionf (det g^R) } [\mathbb{Q}_2] \ \texttt{w} = [\mathbb{Q}'_2; \ \ldots] \\ \mathbb{Q}'_1 \ni \texttt{q0} \Leftrightarrow \mathbb{Q}'_2 \ni \texttt{q0} \\ \text{ext_transitionf g } [\texttt{q0}] \ \texttt{w}^R \subseteq \mathbb{Q}_1 \Leftrightarrow \\ \text{ext_transitionf g } [\texttt{q0}] \ \texttt{w}^R \subseteq \mathbb{Q}_2 \end{array}$$

for all w and the start state q0 of g, assuming g is deterministic.

Which means every reachable state of g is in Q_1 iff it is in Q_2 .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Let Q_1 and Q_2 be two indistinguishable states in det g^R :

```
\begin{array}{l} \text{ext\_transitionf (det } g^R) \quad [\mathbb{Q}_1] \quad \mathbb{w} = [\mathbb{Q}'_1; \ \ldots] \\ \text{ext\_transitionf (det } g^R) \quad [\mathbb{Q}_2] \quad \mathbb{w} = [\mathbb{Q}'_2; \ \ldots] \\ \mathbb{Q}'_1 \ni q0 \Leftrightarrow \mathbb{Q}'_2 \ni q0 \\ \text{ext\_transitionf } g \quad [q0] \quad \mathbb{w}^R \subseteq \mathbb{Q}_1 \Leftrightarrow \\ \text{ext\_transitionf } g \quad [q0] \quad \mathbb{w}^R \subseteq \mathbb{Q}_2 \end{array}
```

for all w and the start state q0 of g, assuming g is deterministic.

Which means every state of g is in Q_1 iff it is in Q_2 , assuming all states of g are reachable. Thus, $Q_1 = Q_2$ as we wanted to prove.

Since det g^R is deterministic and all its states are reachable, det $(det g^R)^R$ is minimal for any finite automaton g. Qed!

Conclusion

	CoqIDE							
File Edit V	New Navigation	Templates Querie	Tools	Compile ->	Debug	Windows	Help	
Paverage Paverage Paverage Paverage ratch v attr v	Preventing sword *1 sword *1 sword *1 so transformation so rev v + [a shifts of the state shifts of the sta	t N) IM pt girev nta g ig > transiti g transiti y2 ++ rev vi ki_t; 5;	xa q2 a	glaarev	nia g	1 gou Stats Symbo Stats Symbo a : 5 wl, r IH : (rev (rev	$ \begin{array}{c} a_{1}\\ a_{2}\\ a_{3}\\ a_{4}\\ a_{1}\\ a_{2}\\ a_{1}\\ a_{2}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{4}\\ a_{5}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{3}\\ a$	
Ready in Rev	ersing, proving rev_	_distr				Line:	4 Char: 1 Offset: 40 0/0	

- Finite automata as lists!
- Proofs guided by tactics with well-defined syntax and step-by-step procedures
- Brzozowski's algorithm verified with Coq's standard library
- We have shown it works for both NFA and DFA, with multiple start states
- Approximately 2400 lines of proofs, 580 lines of specifications

イロト イポト イヨト イヨト

References

Athalye, A.: CoqIOA: a formalization of IO automata in the Coq proof assistant. Ph.D. thesis, Massachusetts Institute of Technology (2017), https://dspace.mit.edu/handle/1721.1/112831

- Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions. Springer Publishing Company, Incorporated, 1st edn. (2010)
- Bonchi, F., Bonsangue, M.M., Rutten, J.J., Silva, A.: Brzozowski's algorithm (co) algebraically. In: Logic and Program Semantics, pp. 12–23. Springer (2012), https://link.springer.com/chapter/ 10.1007/978-3-642-29485-3_2

Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Logical Methods in Computer Science 8 (2012), https://lmcs.episciences.org/1043

References

- Brzozowski, J., Tamm, H.: Theory of átomata. In: Theoretical Computer Science. vol. 539, pp. 13-27. Elsevier (2014), https://www.sciencedirect.com/science/article/pii/ S0304397514002953
- Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer Science+Business Media, New York, 2 edn. (2008)
- Doczkal, C., Kaiser, J.O., Smolka, G.: A constructive theory of regular languages in Coq. In: International Conference on Certified Programs and Proofs. pp. 82–97. Springer (2013), https://link. springer.com/chapter/10.1007/978-3-319-03545-1_6
- Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation. Pearson/Addison Wesley, Boston, 3 edn. (2006)
- Jan, H.: Proof of Brzozowski's algorithm for DFA minimization (2019), https://cs.stackexchange.com/questions/105574/3 proof-of-brzozowskis-algorithm-for-dfa-minimization

References

- Paulson, L.C.: A formalisation of finite automata using hereditarily finite sets. In: International Conference on Automated Deduction. pp. 231-245. Springer (2015), https://link.springer.com/ chapter/10.1007/978-3-319-21401-6_15
- Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjöberg, V., Yorgey, B.: Logical Foundations, vol. 1. UPenn CIS, Pennsylvania, 6.6 edn. (2024)

Ramos, F.: Prova da minimização de autômatos finitos determinísticos pelo algoritmo de brzozowski assistida por computador (2021), https://pergamumweb.udesc.br/acervo/152736, supervisors: Karina Girardi Roggia, Rafael Castro G. Silva

Brzozowski's Algorithm for Automata Minimization Verified in Coq

Filipe Ramos¹ ofiliperamos@gmail.com Karina Girardi Roggia¹ karina.roggia@udesc.br Rafael Castro G. Silva² rasi@di.ku.dk

¹Universidade do Estado de Santa Catarina ²University of Copenhagen

2024

