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Introduction

® Why minimize DFA?
INTRODUCTION ® To reduce memory usage
AUTOMATA THEORY, ° I 1 i
Rl To simplify the automaton for reasoning

COMPUTATION ® To obtain the canonical DFA for a given
regular language

Table-filling algorithm [8]

Brzozowski's algorithm [5]

® Simpler to understand
® Easier to implement
® Despite O(2"), it frequently behaves

well in practice [3]

Lack of correctness proofs of the
algorithm in Coq



Coq Proof Assistant [2]:
® Formal proof management system
® Tactics allowing manageable steps
® Automation for simpler proofs

® Broad user community
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Introduction

Proof goals:

® reversal produces an automaton that accepts the strings
reversed from the source language;

® after reversal and determinization, the paths of the new
automaton connect set states that have original states
connected by reverse paths;

® the minimized automaton is deterministic;

® the language of the minimized DFA is the same as that of the
input automaton;

® all constructed states are reachable and distinguishable.
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Finite Automata in Coq

Context {State Symbol : Typel}.

Record NFA := {
states : list State;
alphabet : list Symbol;
transition : State -> Symbol ->

list State;
start_states : list State;
(Q,%,8,1,F) accept_states : list State
}.

® Need for predicates

® Difficult function handling in definitions and
proofs

® Impossible to apply induction directly
¢ Complex to apply transformations (e.g.

reversal) W




Finite Automata in Coq

Variant NFA_comp :=
| state (q:State)
| symbol (a:Symbol)
| start (q:State)
| accept (q:State)
| transition (ql:State)
(a:Symbol) (qg2:State).

(O 8 B 1)
Definition NFA := list NFA_comp.

Less predicates

Transitions computed using pattern-matching
functions (e.g. transitionf)

Simple induction
Easy to transform through pattern-matching

@




Finite Automata in Coq

i : 1 "II" - <::::,

—

® [state O; state 1; state 2; start O0; accept 2;
transition O 1 1; transition 1 0 2; transition 2 0 2]

® [start 0; accept 2; transition O 1 1; transition 1 0 2;
transition 2 0 2]

@



Deterministic Finite Automata

Variable nfa : NFA.

Definition start_singleton := 3 q, In q (start_sts nfa) A
V g1 g2, In ql (start_sts nfa) — In g2 (start_sts nfa) —

ql = q2.

Definition transitionf_det := V q a ql q2,
let s := transitionf [q] a in In q1 s — In 92 s — ql = g2.

Definition is_dfa := start_singleton /\ transitionf_det.

® Same representation for both NFA and DFA
® NFA <> DFA conversion facilitated

@



Automaton Reversal in Coq

@ start ql becomes accept qi;
® accept g2 becomes start g2;

© transition g3 a g4 becomes transition g4 a g3.



Reversed Language

Inductive path (g:NFA) : State — State — Word — Prop :=
| path_nil q : path g q q nil
| path_trans q1 92 93 a w : In (transition ql a q2) g —
path g 92 93 w — path g ql1 g3 (a::w).

path g ql g2 w < path gR q2 ql Wk

L(g?) = {w®w € L(g)}

L(gmin) = {(#")%w € L(g)}




Automaton Determinization in Coq

@ start (start_states g')
transition Q a (transitionf g' Q a)

® State list normalization

® [0; 1; 2] =1[1; 2; 0]

® Reduction of redundancy

® Consistency in state representation

transitionf g' [0; 1; 2] a = [1; 2; 0]

© Accepting states appending

® The previously generated states with an accepting state
® Removal of unreachable states

® Pumping lemma



Determinization Correctness

By applying induction over the input automaton, we can obtain:
® Only one start state is generated

e transitionf (det g’) [Q1] a=[Q2; ...; Q2]
since only one transition Q1 a Q2 is generated



Proof of Equivalence

q; € Q/A\qg, € ext_transitionf g’ [q;] w&
gy € Q’ € ext_transitionf (det g’) [Q] w

@



Minimization Correctness

Let Q; and Qo be two indistinguishable states in det gR:

ext_transitionf (det gR) Q1] w=1[Q’¢; ...]
ext_transitionf (det gf) [Qy] w=[Q’5; ...]
Q’1 € accept_sts (det gN) < Q’; € accept_sts (det gN)

for all w.

@



Minimization Correctness

Let Q; and Q» be two indistinguishable states in det g":

ext_transitionf (det gR) Q] w=1[Q’1; ...]
ext_transitionf (det gR) Q] w=1[Q’5; ...]
Q’1590; < Q2390

for all w and some start states q0; and g0, in g.



Minimization Correctness

Let Q; and Qy be two indistinguishable states in det g":

ext_transitionf (det gf) [Q;] w=1[Q’y; ...]
ext_transitionf (det gR) Q] w=1[Q’o; ...]
Q’1 290 Q%2290

for all w and the start state qO0 of g, assuming g is deterministic.

@



Minimization Correctness

Q > g, € ext_transitionf g [q;] TLIPES
g; € Q’ € ext_transitionf (det gR) [Q] w

@



Minimization Correctness

Let Q; and Q, be two indistinguishable states in det gR:
ext_transitionf (det gR) Q1] w=1[Q’¢; ...]
ext_transitionf (det g") [Q.] w=[Q’2; ...]

Q’1 9q0<:>Q’2 qu
ext_transitionf g [qO] wh C &
ext_transitionf g [q0] wR C Q,

for all w and the start state qO0 of g, assuming g is deterministic.

Which means every reachable state of g is in Qq iff it is in Qs.

@



Minimization Correctness

Let Q; and Qo be two indistinguishable states in det gR:

ext_transitionf (det gt) [Q1] w=[Q’¢; ...]
ext_transitionf (det gR) Q] w=1[Q’2; ...]
Q0’1290 Q°2>490

ext_transitionf g [qO] wR C Q&
ext_transitionf g [q0] wR C Q,

for all w and the start state q0 of g, assuming g is deterministic.

Which means every state of g is in Qp iff it is in Qp, assuming
all states of g are reachable. Thus, Q; = Q, as we wanted to
prove.

@



Minimization Correctness

Since det g" is deterministic and all its states are
reachable, det (det gR)R is minimal for any finite
automaton g.

Qed!

@
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@vr  @reversing

1 go
(* Reverses word ) State : Type
Fixpoint rev (w:ord) &= Symbol : Type
match w witn State_eq dec ¢ forall x1 X2 : State,
artw = rev w + [a] -
| il Symbol_eq_dec ¢ forall x1 X2 :
B L
(* Reverses NFA wi, w2 : list symbol
Fispoint rev nz- lgswen) oo Ta': rev (ul ++w2) = rev uz ++ rev wl
match g
e 3 Trev Wz ¥+ Fev wl) 7% [a] =
accept ‘qi:g -> start qi:rev_nfa (rev w2 ++ rev ul) ++ [
o el ansition a2 a qliirevnfa g
xi1g = x:irev.

(1 Distribution of uord reversion *)
e T V) = Yow vzserev vt
" hasctionviraE VTS
symmetcy; aply agpnil s

Tevpite 10, app._assoc.
intuition.
ea.

Ready in Reversing, proving rev_disi

Finite automata as lists!

Uine: 4 Char: 1 Ofisat: 40

Conclusion

Proofs guided by tactics with well-defined syntax and step-by-step

procedures

Brzozowski's algorithm verified with Coq’s standard library
We have shown it works for both NFA and DFA, with multiple start

states

Approximately 2400 lines of proofs, 580 lines of specifications
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