
Trusted Deployer:
A Tool for Safe Creation and Upgrade of Ethereum

Smart Contracts
Juliandson Ferreira1, Pedro Antonino2, Augusto Sampaio1, A. W. Roscoe2,3 and Filipe Arruda1

1 Universidade Federal de Pernambuco
2 The Blockhouse Technology Limited

3 University College Blockchain Research Centre

27th Brazilian Symposium on Formal Methods

Smart contracts

●Smart contracts are programs stored on a blockchain that
automatically enforce its terms when predetermined conditions
are met

●They eliminate the need for intermediaries by enforcing
agreements between parties

● They were created to provide a secure way to manage digital
assets

Code is law

●Building blocks: smart contracts

●Code is immutable and autonomous

●Code unequivocally and unambiguously defines behaviour

Code is law

●Building blocks: smart contracts

●Code is immutable

●Code unequivocally and unambiguously defines behaviour

What if the code is wrong?

Attacks on smart contracts

Problem

 This tweet can be found in: https://twitter.com/vitalikbuterin/status/868751724311216128

State of the art

●A number of tools to analyse smart contracts
○ Try to prevent bugs

●The proxy pattern
○ Allow simulation of contract upgrades

●Contract auditing
○ Manual/tool-supported detailed code reviews

State of the art

●A number of tools to analyse smart contracts
○ Try to prevent bugs --- no systematic application/enforcement framework

●The proxy pattern
○ Allow simulation of contract upgrades --- no upgrade guarantees/too late

●Contract auditing
○ Manual/tool-supported detailed code reviews --- no formal guarantees

Tool support and application - trusted deployer (Proposal)

upgrade C1, S1
with C2, S2

client contract

contract C1

…

proof
obligation

S1 ⊑ C1

Proxy

client contract

contract C2

proof
obligations

S1 ⊑ar S2
S2 ⊑ C2

Proxy

create C1
with spec S1

A typical safe evolution scenario

Paradigm shift: from code is law to conformance is law

Conformance notion: syntactic obligation

Implementation

Specification

Implicit

Conformance notion: semantic obligation

Merged contract

… constructor and deposit omitted… solc-verify
- off-the-shelf verifier
- design by contract

Safe contract creation

Safe contract creation transactions

Specification Refinement

// @notice invariant totalSupply == __verifier_sum_uint(balances)

contract ERC20SpecRefined {

 mapping (address => uint256) balances;

 /// @notice postcondition balances[_owner] == balance

 function balanceOf(address _owner) public returns (uint256 balance);

 /**

 * @notice postcondition ((balances[msg.sender] == __verifier_old_uint

(balances[msg.sender]) - _value && msg.sender != _to) || (

balances[msg.sender] == __verifier_old_uint (balances[msg.sender]) &&

msg.sender == _to) && success) || !success

 * @notice postcondition ((balances[_to] == __verifier_old_uint (

balances[_to]) + _value && msg.sender != _to) || (balances[_to] ==

__verifier_old_uint (balances[_to]) && msg.sender == _to) && success)

|| !success

 */

 function transfer(address _to, uint256 _value) public returns (bool success);

}

//@notice invariant totalSupply == __verifier_sum_uint(users[__verifier_idx_address].balance)

contract ERC20Spec {

 struct User {

 uint256 balance;

 }

 mapping (address => User) users;

 // @notice postcondition users[_owner].balance == balance

 function balanceOf(address _owner) public returns (uint256 balance);

 /**

 * @notice postcondition ((users[msg.sender].balance == __verifier_old_uint

(users[msg.sender].balance) - _value && msg.sender != _to) || (users[msg.sender].balance

== __verifier_old_uint (users[msg.sender].balance) && msg.sender == _to) && success) ||

!success

 * @notice postcondition ((users[_to].balance == __verifier_old_uint (users[_to].balance

) + _value && msg.sender != _to) || (users[_to].balance == __verifier_old_uint (

users[_to].balance) && msg.sender == _to) && success) || !success

 */

 function transfer(address _to, uint256 _value) public returns (bool success);

}

Original Spec Refined Spec

Abstraction relation: forall (address a) users[a].balance == balances[a]

Safe contract upgrade

My Upgrades

Background Theory

● Pedro Antonino, Juliandson Ferreira, Augusto Sampaio, and A. W. Roscoe. Specification is law:

Safe creation and upgrade of ethereum smart contracts. In Bernd-Holger Schlingloff and Ming

Chai, editors, Software Engineering and Formal Methods - 20th International Conference,

SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings, volume 13550 of Lecture

Notes in Computer Science, pages 227–243. Springer, 2022.

● Pedro Antonino, Juliandson Ferreira, Augusto Sampaio, and A. W. Roscoe. A

refinement-based approach to safe smart contract deployment and evolution. In Software and

Systems Modeling, SOSYM 2024, page 657–693, Cham, 2024. Springer International

Publishing.

Conclusion

● Our framework is centred around a trusted deployer that prevents the creation

and upgrade of non-compliant contracts.

● Trusted deployer records information about the contracts that have been

verified, and which specification they conform to.

● Evaluation Ethereum Standards: ERC20, ERC3156, ERC721 and ERC1155.

Future Work

● Systematic mapping from informal requirements to formal

specifications

● Investigate bugs arising from the consensus protocol

● Automate the migration of the contract state when the upgrade

involves a change in data representation

Trusted Deployer:
A Tool for Safe Creation and Upgrade of Ethereum

Smart Contracts
Juliandson Ferreira1, Pedro Antonino2, Augusto Sampaio1, A. W. Roscoe2,3 and Filipe Arruda1

1 Universidade Federal de Pernambuco
2 The Blockhouse Technology Limited

3 University College Blockchain Research Centre

27th Brazilian Symposium on Formal Methods

