Formal Privacy Analyses for Open Banking

Luigi D. C. Soares^{1,2}, Mário S. Alvim¹, Di Bu², Natasha Fernandes² and Yin Liao²

6th December 2024

¹UFMG (Brazil) ²Macquarie University (Australia)

Open Banking — Pros

• Gives customers control over the sharing of their financial data

Open Banking — **Pros**

- Gives customers control over the sharing of their financial data
- Facilitates access to new financial products or services

Open Banking — **Pros**

- Gives customers control over the sharing of their financial data
- Facilitates access to new financial products or services
- Smaller fintechs can evaluate customers without requiring negotiation with other banks or relying on customer-provided information

• It involves the sharing of sensitive microdata

- It involves the sharing of sensitive microdata
- In principle, under Open Banking companies should request from customers only the kind of information that their product requires. But, descriptions

- It involves the sharing of sensitive microdata
- In principle, under Open Banking companies should request from customers only the kind of information that their product requires. But, descriptions
 - Are mandatory and are used by companies in multiple ways

- It involves the sharing of sensitive microdata
- In principle, under Open Banking companies should request from customers only the kind of information that their product requires. But, descriptions
 - Are mandatory and are used by companies in multiple ways
 - Carry way more information than what companies need

- It involves the sharing of sensitive microdata
- In principle, under Open Banking companies should request from customers only the kind of information that their product requires. But, descriptions
 - Are mandatory and are used by companies in multiple ways
 - Carry way more information than what companies need
 - May contain a variety of sensitive information

- It involves the sharing of sensitive microdata
- In principle, under Open Banking companies should request from customers only the kind of information that their product requires. But, descriptions
 - Are mandatory and are used by companies in multiple ways
 - Carry way more information than what companies need
 - May contain a variety of sensitive information
- Goal: Assess privacy risks involved when sharing financial data via Open Banking

• Attacker gains access to data collected via Open Banking

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

Re-identification Risk

Auxiliary Information	1 month 2	2 months	3 months	4 months
Date, Payee, Category				
Date, Amount				
Date, Payee, Amount				
Date, Amount, Category				
Date, Payee, Amount, Category				

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

Re-identification Risk

Auxiliary Information	1 month 2 months 3 months 4 months
Date, Payee, Category	5.30%
Date, Amount	26.6%
Date, Payee, Amount	52.1%
Date, Amount, Category	43.7%
Date, Payee, Amount, Category	54.4%

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

Re-identification Risk

Auxiliary Information	1 month	2 months	3 months	4 months
Date, Payee, Category	5.30%	29.2%		
Date, Amount	26.6%	80.7%		
Date, Payee, Amount	52.1%	91.1%		
Date, Amount, Category	43.7%	91.7%		
Date, Payee, Amount, Category	54.4%	93.6%		

- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

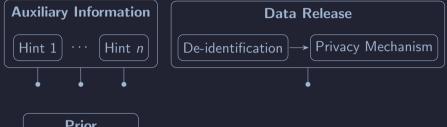
Re-identification Risk

Auxiliary Information	1 month	2 months	3 months	4 months
Date, Payee, Category	5.30%	29.2%	60.9%	
Date, Amount	26.6%	80.7%	97.5%	
Date, Payee, Amount	52.1%	91.1%	99.2%	
Date, Amount, Category	43.7%	91.7%	99.4%	
Date, Payee, Amount, Category	54.4%	93.6%	99.6%	

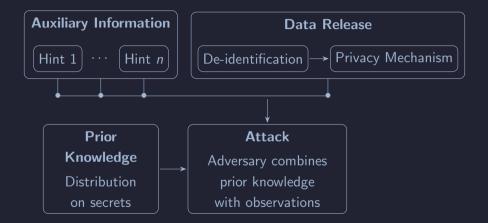
- Attacker gains access to data collected via Open Banking
- Attacker combines the dataset with external, auxiliary information
- Attacker tries to re-identify the transaction history of a target

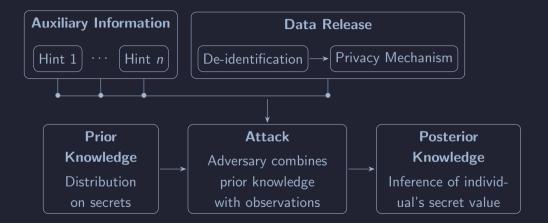
Re-identification Risk

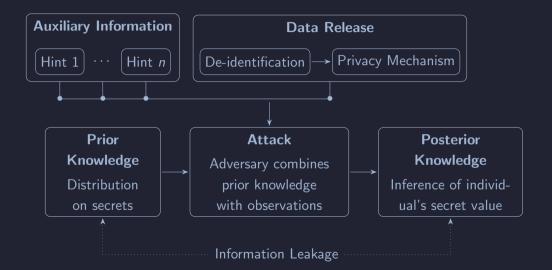
Auxiliary Information	1 month	2 months	3 months	4 months
Date, Payee, Category	5.30%	29.2%	60.9%	83.6%
Date, Amount	26.6%	80.7%	97.5%	99.8%
Date, Payee, Amount	52.1%	91.1%	99.2%	99.9%
Date, Amount, Category	43.7%	91.7%	99.4%	100%
Date, Payee, Amount, Category	54.4%	93.6%	99.6%	100%

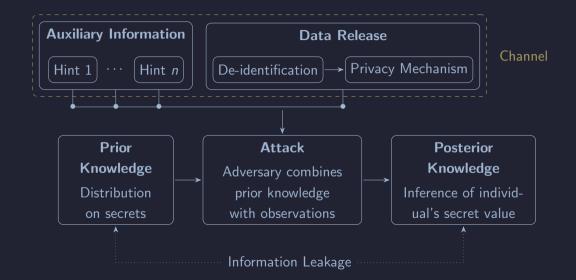


Prior Knowledge Distribution on secrets









• We use the mathematical framework of Quantitative Information Flow (QIF)

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

 $x_1=\langle {\sf Lineu}:ec t_1,{\sf Nen}\hat{e}:ec t_2,{\sf Agostinho}:ec t_3,{\sf Tuco}:ec t_4,{\sf Bebel}:ec t_5
angle -$

d

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

 $x_1 = \langle \text{Lineu: } \vec{t_1}, \text{Nenê: } \vec{t_2}, \text{Agostinho: } \vec{t_3}, \text{Tuco: } \vec{t_4}, \text{Bebel: } \vec{t_5} \rangle \longrightarrow x_2 = \langle \text{Lineu: } \vec{t_2}, \text{Nenê: } \vec{t_3}, \text{Agostinho: } \vec{t_4}, \text{Tuco: } \vec{t_5}, \text{Bebel: } \vec{t_1} \rangle \longrightarrow d$

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

 $x_{1} = \langle \text{Lineu: } \vec{t}_{1}, \text{Nenê: } \vec{t}_{2}, \text{Agostinho: } \vec{t}_{3}, \text{Tuco: } \vec{t}_{4}, \text{Bebel: } \vec{t}_{5} \rangle \longrightarrow x_{2} = \langle \text{Lineu: } \vec{t}_{2}, \text{Nenê: } \vec{t}_{3}, \text{Agostinho: } \vec{t}_{4}, \text{Tuco: } \vec{t}_{5}, \text{Bebel: } \vec{t}_{1} \rangle \longrightarrow d_{4}$

 $x_3 = \langle \text{Lineu: } \vec{t}_3, \text{Nenê: } \vec{t}_4, \text{Agostinho: } \vec{t}_5, \text{Tuco: } \vec{t}_1, \text{Bebel: } \vec{t}_2 \rangle$

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

 $x_{1} = \langle \text{Lineu: } \vec{t}_{1}, \text{Nenê: } \vec{t}_{2}, \text{Agostinho: } \vec{t}_{3}, \text{Tuco: } \vec{t}_{4}, \text{Bebel: } \vec{t}_{5} \rangle \longrightarrow x_{2} = \langle \text{Lineu: } \vec{t}_{2}, \text{Nenê: } \vec{t}_{3}, \text{Agostinho: } \vec{t}_{4}, \text{Tuco: } \vec{t}_{5}, \text{Bebel: } \vec{t}_{1} \rangle \longrightarrow d_{x_{3}} = \langle \text{Lineu: } \vec{t}_{3}, \text{Nenê: } \vec{t}_{4}, \text{Agostinho: } \vec{t}_{5}, \text{Tuco: } \vec{t}_{1}, \text{Bebel: } \vec{t}_{2} \rangle \longrightarrow d_{x_{3}}$

• In addition to observing a de-identified dataset *d*, an attacker might also know that their target, say Lineu, recurringly buys at a Pastry Shop and Araujo

- We use the mathematical framework of Quantitative Information Flow (QIF)
- Let $d = \langle 1: \vec{t_1}, 2: \vec{t_2}, 3: \vec{t_3}, 4: \vec{t_4}, 5: \vec{t_5} \rangle$ be a de-identified dataset, where each $\vec{t_i}$ is the transaction history of customer with id *i*

 $x_{1} = \langle \text{Lineu: } \vec{t}_{1}, \text{Nenê: } \vec{t}_{2}, \text{Agostinho: } \vec{t}_{3}, \text{Tuco: } \vec{t}_{4}, \text{Bebel: } \vec{t}_{5} \rangle \longrightarrow$ $x_{2} = \langle \text{Lineu: } \vec{t}_{2}, \text{Nenê: } \vec{t}_{3}, \text{Agostinho: } \vec{t}_{4}, \text{Tuco: } \vec{t}_{5}, \text{Bebel: } \vec{t}_{1} \rangle \longrightarrow d$ $x_{3} = \langle \text{Lineu: } \vec{t}_{3}, \text{Nenê: } \vec{t}_{4}, \text{Agostinho: } \vec{t}_{5}, \text{Tuco: } \vec{t}_{1}, \text{Bebel: } \vec{t}_{2} \rangle \longrightarrow$

- In addition to observing a de-identified dataset *d*, an attacker might also know that their target, say Lineu, recurringly buys at a Pastry Shop and Araujo
- With 2 months of data, the attacker could observe, e.g., (Pastry Shop, Araujo, d)

C^{Lineu}	$\langle Pastry,Araujo,d angle$	$\langle Clinic,Araujo,d angle$	$\langle Clinic,Pastry,d angle$	
x_1	$\frac{1}{2}$	$\frac{1}{2}$	0	···]
<i>x</i> ₂	0	0	0	
<i>x</i> 3	0	$\frac{1}{6}$	$\frac{1}{6}$	
<i>X</i> 4	0	0	0	
x_5	0	0	0	
	:			:

We can decompose the final channel C^{Lineu} into subchannels, each corresponding to one of the subcomponents (hints and data release): $H^1 \parallel H^2 \parallel D$, where

$$(A \parallel B)_{x,\langle y,z \rangle} \stackrel{\text{def}}{=} A_{x,y} B_{x,z}$$

We can decompose the final channel C^{Lineu} into subchannels, each corresponding to one of the subcomponents (hints and data release): $H^1 \parallel H^2 \parallel D$, where

$$(A \parallel B)_{x,\langle y,z \rangle} \stackrel{\text{def}}{=} A_{x,y} B_{x,z}$$

H^1	Pastry	Clinic	Araujo	Uber	Ibis	H^2	Araujo	Transfer	Pastry	D	d_2		
x_1			0	0	0	×1 [0	0	x_1	0	···]	
<i>x</i> 2	0	0		0	0	<i>x</i> 2	0		0	<i>x</i> 2	0		
								0 0					
X4	0	0	0		0	" x4		0	0	" x ₄	0		
<i>x</i> 5	0	0	0		0	<i>x</i> 5	0		0	<i>x</i> 5	0		
÷										:		:	

Formal Model — Modelling Adversaries

• Different adversaries are modelled via gain functions

Formal Model — Modelling Adversaries

- Different adversaries are modelled via gain functions
- A gain function g : W × X → ℝ measures the gain of the adversary if they take an action w ∈ W when the secret input is some x ∈ X

Formal Model — Modelling Adversaries

- Different adversaries are modelled via gain functions
- A gain function g : W × X → ℝ measures the gain of the adversary if they take an action w ∈ W when the secret input is some x ∈ X
- An adversary who wants to recover the whole secret dataset is modelled as

 $\mathbf{1}(w,x) \stackrel{\mathsf{def}}{=} 1$ if w = x else 0

Formal Model — Modelling Adversaries

- Different adversaries are modelled via gain functions
- A gain function g : W × X → ℝ measures the gain of the adversary if they take an action w ∈ W when the secret input is some x ∈ X
- An adversary who wants to recover the whole secret dataset is modelled as

$$\mathbf{1}(w,x) \stackrel{\mathsf{def}}{=} 1$$
 if $w = x$ else 0

• An adversary with a particular target, say Lineu, is modelled as

$$\mathbf{1}_{\mathsf{Lineu}}(w,x) \stackrel{\mathsf{def}}{=} 1$$
 if $w = x @ \mathsf{Lineu} \ \mathsf{else} \ 0,$

where x@Lineu returns the record labelled as Lineu in x

• We assume a Bayesian adversary

- We assume a Bayesian adversary
- The adversary starts with a prior knowledge $\pi:\mathbb{D}\mathcal{X}$

- We assume a Bayesian adversary
- The adversary starts with a prior knowledge $\pi:\mathbb{D}\mathcal{X}$
- Given the prior knowledge, the prior g-vulnerability is

$$V_{m{g}}(\pi) \stackrel{\mathsf{def}}{=} \max_{w \in \mathcal{W}} \sum_{x \in \mathcal{X}} \pi_x \, m{g}(w,x)$$

- We assume a Bayesian adversary
- The adversary starts with a prior knowledge $\pi:\mathbb{D}\mathcal{X}$
- Given the prior knowledge, the prior g-vulnerability is

$$V_{m{g}}(\pi) \stackrel{\mathsf{def}}{=} \max_{w \in \mathcal{W}} \sum_{x \in \mathcal{X}} \pi_x \, m{g}(w,x)$$

• The adversary computes a distribution on the possible outputs as

$$(\pi \triangleright \mathsf{C})_y \stackrel{\mathsf{def}}{=} \sum_{x \in \mathcal{X}} (\pi \triangleright \mathsf{C})_{x,y} = \sum_{x \in \mathcal{X}} \pi_x \mathsf{C}_{x,y}$$

- We assume a Bayesian adversary
- The adversary starts with a prior knowledge $\pi:\mathbb{D}\mathcal{X}$
- Given the prior knowledge, the prior g-vulnerability is

$$V_{m{g}}(\pi) \stackrel{\mathsf{def}}{=} \max_{w \in \mathcal{W}} \sum_{x \in \mathcal{X}} \pi_x \, m{g}(w,x)$$

• The adversary computes a distribution on the possible outputs as

$$(\pi \triangleright \mathsf{C})_y \stackrel{\mathsf{def}}{=} \sum_{x \in \mathcal{X}} (\pi \triangleright \mathsf{C})_{x,y} = \sum_{x \in \mathcal{X}} \pi_x \mathsf{C}_{x,y}$$

• And distributions on the possible secret values, conditioned on outputs, as

$$(\pi \triangleright \mathsf{C})_{x|y} \stackrel{\mathsf{def}}{=} \frac{(\pi \triangleright \mathsf{C})_{x,y}}{(\pi \triangleright \mathsf{C})_y} = \frac{\pi_x \,\mathsf{C}_{x,y}}{(\pi \triangleright \mathsf{C})_y}$$

• Then, the (expected) posterior g-vulnerability is

$$V_{g}[\pi \triangleright \mathsf{C}] \stackrel{\mathsf{def}}{=} \sum_{y \in \mathcal{Y}} (\pi \triangleright \mathsf{C})_{y} V_{g}((\pi \triangleright \mathsf{C})_{X|y})$$

• Then, the (expected) posterior g-vulnerability is

$$V_g[\pi \triangleright \mathsf{C}] \stackrel{\mathsf{def}}{=} \sum_{y \in \mathcal{Y}} (\pi \triangleright \mathsf{C})_y \ V_g((\pi \triangleright \mathsf{C})_{X|y})$$

• And the information that leaks in the attack can be measured (multiplicatively) as

$$\mathcal{L}_{m{g}}(\pi,\mathsf{C}) \stackrel{\mathsf{def}}{=} rac{V_{m{g}}[\pi \triangleright \mathsf{C}]}{V_{m{g}}(\pi)}$$

• Then, the (expected) posterior g-vulnerability is

$$V_g[\pi \triangleright \mathsf{C}] \stackrel{\mathsf{def}}{=} \sum_{y \in \mathcal{Y}} (\pi \triangleright \mathsf{C})_y \ V_g((\pi \triangleright \mathsf{C})_{X|y})$$

• And the information that leaks in the attack can be measured (multiplicatively) as

$$\mathcal{L}_{m{g}}(\pi,\mathsf{C}) \stackrel{\mathsf{def}}{=} rac{V_{m{g}}[\pi \triangleright \mathsf{C}]}{V_{m{g}}(\pi)}$$

ullet In our running example, $g=\mathbf{1}_{\mathsf{Lineu}}$ and $\mathsf{C}=\mathsf{C}^{\mathsf{Lineu}}=\mathsf{H}^1\parallel\mathsf{H}^2\parallel\mathsf{D}$

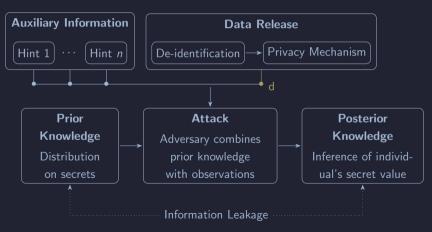
	C^{Lineu}	$\langle Pastry,Araujo,d angle\;\langle$	Clinic, Araujo, o	$d angle$ \cdots	$rac{4!}{2 \mathcal{X} }$ (Pastry, Araujo, d)	$\frac{2\cdot 4!}{3 \mathcal{X} }$ (Clinic, Araujo, d)	
$\begin{bmatrix} \frac{1}{ \mathcal{X} } \end{bmatrix}$						$\frac{3}{4\cdot 4!}$	
$\frac{1}{ \mathcal{X} }$							
$\frac{1}{ \mathcal{X} }$	[⊳] [×] 3					$\frac{1}{4\cdot 4!}$	
$\frac{1}{ \mathcal{X} }$							
$\frac{1}{ \mathcal{X} }$							
				:]			

	C^{Lineu}	$\langle Pastry, Araujo, d angle \langle Pastry, Araujo, d \rangle$	Clinic, Araujo,	$d angle$ \cdots		$\frac{4!}{2 \mathcal{X} }$ (Pastry, Araujo, d)	$\frac{2\cdot 4!}{3 \mathcal{X} }$ (Clinic, Araujo, d)	
$\begin{bmatrix} \frac{1}{ \mathcal{X} } \end{bmatrix}$		$\frac{1}{2}$			x ₁ [$\frac{3}{4\cdot 4!}$	
$\frac{1}{ \mathcal{X} }$		0			<i>x</i> 2			
$\begin{vmatrix} \frac{1}{ \mathcal{X} } \end{vmatrix}$		0			$= x_3$		$\frac{1}{4\cdot 4!}$	
$\frac{1}{ \mathcal{X} }$		0			<i>X</i> 4			
$\frac{1}{ \mathcal{X} }$		0			<i>x</i> 5			
				:	:			

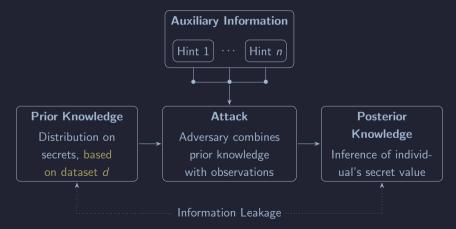
There are 4! datasets similar to x_1 , in which Lineu's record is \vec{t}_1 , so

 $(\pi
hbar \mathsf{C}^{\mathsf{Lineu}})_{\langle \mathsf{Pastry},\mathsf{Araujo}, d
angle} = {4!}/{(2|\mathcal{X}|)}$

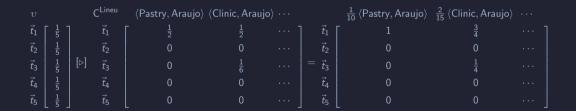
We cannot compute over all possible de-identified datasets that could be released, so we focus on one particular dataset d, assuming the adversary has already observed it:



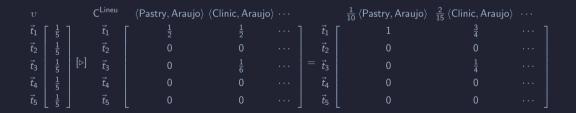
We cannot compute over all possible de-identified datasets that could be released, so we focus on one particular dataset d, assuming the adversary has already observed it:



In our experiments, there are no two customers with the same transaction history. So, we can group secrets that are "similar". For instance, every dataset that maps to d in which Lineu's record is \vec{t}_1 . Then, the space of secrets becomes the transaction histories:

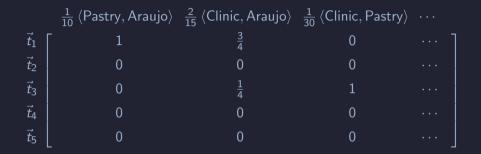


In our experiments, there are no two customers with the same transaction history. So, we can group secrets that are "similar". For instance, every dataset that maps to d in which Lineu's record is \vec{t}_1 . Then, the space of secrets becomes the transaction histories:

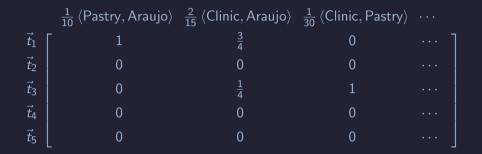


and the gain function $\mathbf{1}_{\mathsf{Lineu}}$ is replaced with $\mathbf{1}$

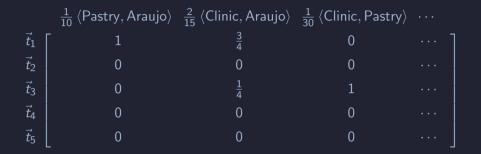
	$rac{1}{10}\left< Pastry,Araujo \right>$	$\frac{2}{15}$ (Clinic, Araujo)	$rac{1}{30}\left< Clinic,Pastry \right>$	
$ec{t}_1$	1	<u>3</u> 4	0	ך
\vec{t}_2	0	0	0	
\vec{t}_3	0	$\frac{1}{4}$	1	
\vec{t}_4	0	0	0	
$ec{t}_5$	0	0	0	



• The prior vulnerability is then $V_1(v) = 1/5$



- The prior vulnerability is then $V_1(\upsilon) = 1/5$
- The posterior vulnerability is $V_1[v \triangleright C^{\text{Lineu}}] = \frac{1}{10} + \frac{2}{15} \cdot \frac{3}{4} + \frac{1}{30} + \cdots = \frac{14}{15}$



- The prior vulnerability is then $V_1(\upsilon) = 1/5$
- The posterior vulnerability is $V_1[v \triangleright C^{\text{Lineu}}] = 1/10 + 2/15 \cdot 3/4 + 1/30 + \cdots = 14/15$
- The information that leaks in this attack is thus $\mathcal{L}_1(\upsilon,\mathsf{C}^{\mathsf{Lineu}}) = {}^{14}\!/\!\!_3 pprox 4.67$

• We developed a formal model for attacks against data releases, with a case study in which we analysed the implementation of Open Banking (in Australia)

- We developed a formal model for attacks against data releases, with a case study in which we analysed the implementation of Open Banking (in Australia)
- We highlighted the risks of data sharing for consumers, for both transaction-history recovery and indirect attribute-inference risks (see paper)

- We developed a formal model for attacks against data releases, with a case study in which we analysed the implementation of Open Banking (in Australia)
- We highlighted the risks of data sharing for consumers, for both transaction-history recovery and indirect attribute-inference risks (see paper)
- This is an ongoing research. We are currently working on the analysis of privacy mechanisms, and this led us to discover a gap in the literature when considering dynamic scenarios (i.e., fixed outputs)

- We developed a formal model for attacks against data releases, with a case study in which we analysed the implementation of Open Banking (in Australia)
- We highlighted the risks of data sharing for consumers, for both transaction-history recovery and indirect attribute-inference risks (see paper)
- This is an ongoing research. We are currently working on the analysis of privacy mechanisms, and this led us to discover a gap in the literature when considering dynamic scenarios (i.e., fixed outputs)
- This project has recently resulted in a grant from the Australian Research Council (ARC), under the 2025 Discovery Projects program!