
Formally Verified Implementation
of the K-Nearest Neighbors

Classification Algorithm
Bernny Velasquez, Jessica Herring, and Nadeem Abdul Hamid

Berry College, Georgia, USA

SBMF 2024, Vitória, Brazil

Bla bla
Your text would go here.

Abstract
Your text would go here.

Your text would go here.

Your text would go here.

JESSICA HERRING
Department of Mathematics and Computer Science

Your text would go here.

Formally Verified Implementation of a !-Nearest Neighbors
Classification Algorithm

ML
algorithm

ML algorithm
implementation

Proof
(machine-
checked)

Results

properties

Data

ML
algorithm

ML algorithm
implementation Results

Data

Proof
(machine-
checked)

properties

Implementing Machine Learning Algorithms

?• Gap between the
mathematical model
and mechanics of
implementation

Bla bla
Your text would go here.

Abstract
Your text would go here.

Your text would go here.

Your text would go here.

JESSICA HERRING
Department of Mathematics and Computer Science

Your text would go here.

Formally Verified Implementation of a !-Nearest Neighbors
Classification Algorithm

ML
algorithm

ML algorithm
implementation

Proof
(machine-
checked)

Results

properties

Data

ML
algorithm

ML algorithm
implementation Results

Data

Proof
(machine-
checked)

properties

Bla bla
Your text would go here.

Abstract
Your text would go here.

Your text would go here.

Your text would go here.

JESSICA HERRING
Department of Mathematics and Computer Science

Your text would go here.

Formally Verified Implementation of a !-Nearest Neighbors
Classification Algorithm

ML
algorithm

ML algorithm
implementation

Proof
(machine-
checked)

Results

properties

Data

ML
algorithm

ML algorithm
implementation Results

Data

Proof
(machine-
checked)

properties

Implementing Machine Learning Algorithms

?• Gap between the
mathematical model
and mechanics of
implementation

• (Big Picture)
Context for this work:

Development of
verified
implementations of
ML systems

Focus: Classification

• Does the program code for an
ML algorithm faithfully
implement the mathematical
model/description?

• Focus on the mechanics of the
algorithm, not meta-theoretical
or application-specific
properties

Image: medium.com

KNN (K-Nearest-Neighbors) Classification

• One of the oldest, well-known, widely used
classification algorithms
• Assigns class labels to observations based on

previously seen data
• Can also be used for regression

• Applied in a wide variety of domains
(not just ML)
• Popularity can be attributed to its simplicity,

ease of implementation, and high accuracy
rates
• Although, there are known limitations

of KNN search
• (curse of dimensionality; scaling to large data sets)

Image: medium.com

Contributions

Mechanically verified implementation of a
KNN classification algorithm in the Coq proof assistant.

•⭐ Integrating previously-verified data structures/algorithms
• k-d trees and AVL tree-based Map
• Generalized K-nearest-neighbors search
• ⭐ Plurality algorithm

• ⭐ Formal specification and verification

Classifier Implementation

query

2

plura l i ty

3
1
2
2
2
…

lookup_
labels

nbrs

(…, …, …)
(…, …, …)
(…, …, …)

…

knn_search

(…, …, …)

ktree

……

build_
kdtree labeltable

(…, …, …) : 2
(…, …, …) : 1
(…, …, …) : 3

…

dataset

(…, …, …)
(…, …, …)
(…, …, …)

…

Prior Work: Verified KNN Search [Hamid, SAC 2024]

Construct a k-d tree structure from a
list of k-dimensional data points

build_kdtree (k:nat) (data:list datapt) : kdtree

knn_search
(D:datapt -> datapt -> nat) (K:nat) (k:nat) (tree:kdtree) (query:datapt) : list datapt

Produce a list of the K nearest data points (based on a given distance
metric) to the query point among all the points in the tree.

query

2

plura l i ty

3
1
2
2
2
…

lookup_
labels

nbrs

(…, …, …)
(…, …, …)
(…, …, …)

…

knn_search

(…, …, …)

ktree

……

build_
kdtree labeltable

(…, …, …) : 2
(…, …, …) : 1
(…, …, …) : 3

…

dataset

(…, …, …)
(…, …, …)
(…, …, …)

…

Theorem knn_search_build_kdtree_correct :
forall dist_metric, dist_metric_wf dist_metric ->
forall (K:nat) (k : nat) (data : list datapt), // Preconditions:
0 < K -> // at least one neighbor sought
0 < length data -> // data is non-empty
0 < k -> // dimension space is non-empty
(forall v' : datapt, // all data points well-formed (k-dim)

In v' data -> length v' = k) ->
forall tree query result,

tree = (build_kdtree k data) -> // If: the k-d tree built from data
knn_search K k tree query = result -> // produces result for a query point,
exists leftover, // Then:

length result = min K (length data) // the result is length (at most) K,
/\ Permutation data (result ++ leftover) // and is a sub-list of data,
/\ all_in_leb (dist_metric query) result leftover. // and everything in

// result is closer in distance to the query than all the leftover part of data.

Prior Work: Verified KNN Search [Hamid, SAC 2024]

Classify algorithm
Definition classify (D : datapt -> datapt -> nat) (* dist metric *)

(K : nat) (* number of neighbors *)
(k : nat) (* dimensions of all points *)
(dataset : (list datapt))
(labeltable : LabelTable)
(query : datapt)
: option nat :=

let ktree := (build_kdtree k dataset) in
let nbrs := knn_search D K k ktree query in

fst (plurality (lookup_labels labeltable nbrs)).

(a)

Function plurality (vals : list nat) : option nat * nat :=
match vals with
| nil => (None, 0)
| h :: t => match (plurality t) with

| (None, c) => let c’ := (1 + count t h) in
if c <? c’ then (Some h, c’) else (None, c)

| (Some x, c) => let c’ := (1 + count t h) in
if c =? c’ then (None, c)
else if c <? c’ then (Some h, c’)
else (Some x, c)

end
end.

(b)

Fig. 2. Implementation of the classify and plurality functions.

the count value is that at some point in the recursive evaluation of the function,
there might be a tie in the counts of some elements (resulting in None being
returned as the maximum frequency element), but as the recursive evaluation
unfolds back through the list, then the count of one element may eventually
exceed that count value and result in the restoration of Some maximal element.
For the plurality function, Coq’s Function command [4] is used, which not
only enforces syntactic restrictions to guarantee termination of recursive calls,
but also defines induction principles that enable reasoning about the definition.

3.3 Map Data Structure

An important supporting data structure for the classify function is the label
table: a map from data points (lists of naturals) to class labels (also naturals). We
used a module in the Coq standard library that provides an e!cient functional
implementation of maps using AVL trees (FMapAVL).4 The standard library mod-
ule abstracts over both the type of keys and values of the map. However, unlike
mainstream programming languages, it requires satisfaction of a rich set of con-
straints on the type of keys in order to be instantiated with it. In particular, the
key must satisfy the requirements of being an order relation.5 Thus, we needed
to specify the notion of an order on lists of naturals (our data points). We did
this through an inductively-defined proposition in Coq that represents lexico-
graphic ordering on lists of naturals. This process took some e"ort to understand
what was expected by the FMapAVL library, as the Coq standard library contains
duplicate and deprecated modules and interfaces due to its evolution, and uses
di"erent notations and styles of specification across modules.

3.4 Application

Appendix B presents a small application of our implementation to the well-
known Iris flower data set [2]. We split the data set into conventional 80/20
training/test sets and build a classifier using the Manhattan distance metric
and K = 5. At least for some permutations of the training/test data, there are
no mis-classified data points. However, it should be noted that correctness of the
4 https://coq.inria.fr/doc/v8.16/stdlib/Coq.FSets.FMapAVL.html
5 https://coq.inria.fr/doc/v8.16/stdlib/Coq.Structures.Orders.html

5

query

2

plura l i ty

3
1
2
2
2
…

lookup_
labels

nbrs

(…, …, …)
(…, …, …)
(…, …, …)

…

knn_search

(…, …, …)

ktree

……

build_
kdtree labeltable

(…, …, …) : 2
(…, …, …) : 1
(…, …, …) : 3

…

dataset

(…, …, …)
(…, …, …)
(…, …, …)

…

Computing Plurality
• Given a list of values, determine the most frequently occurring
• Produce a pair of a potential maximum frequency value and the

maximum frequency count of any value in the given list
• In case of a tie, produce None as the maximum frequency value

• To compute plurality (v :: tail) ,
 consider plurality tail and cv = 1 + count v tail
• Case (None, c) and c < cv è v is the new plurality value
• Case (None, c) and c >= cv è retain (None, c)
• Case (Some x, c) and c = cv è tie, so (None, c)
• Case (Some x, c) and c < cv è v is the new plurality value
• Case (Some x, c) and c > cv è retain x

Plurality Implementation

Definition classify (D : datapt -> datapt -> nat) (* dist metric *)
(K : nat) (* number of neighbors *)
(k : nat) (* dimensions of all points *)
(dataset : (list datapt))
(labeltable : LabelTable)
(query : datapt)
: option nat :=

let ktree := (build_kdtree k dataset) in
let nbrs := knn_search D K k ktree query in

fst (plurality (lookup_labels labeltable nbrs)).

(a)

Function plurality (vals : list nat) : option nat * nat :=
match vals with
| nil => (None, 0)
| h :: t => match (plurality t) with

| (None, c) => let c’ := (1 + count t h) in
if c <? c’ then (Some h, c’) else (None, c)

| (Some x, c) => let c’ := (1 + count t h) in
if c =? c’ then (None, c)
else if c <? c’ then (Some h, c’)
else (Some x, c)

end
end.

(b)

Fig. 2. Implementation of the classify and plurality functions.

the count value is that at some point in the recursive evaluation of the function,
there might be a tie in the counts of some elements (resulting in None being
returned as the maximum frequency element), but as the recursive evaluation
unfolds back through the list, then the count of one element may eventually
exceed that count value and result in the restoration of Some maximal element.
For the plurality function, Coq’s Function command [4] is used, which not
only enforces syntactic restrictions to guarantee termination of recursive calls,
but also defines induction principles that enable reasoning about the definition.

3.3 Map Data Structure

An important supporting data structure for the classify function is the label
table: a map from data points (lists of naturals) to class labels (also naturals). We
used a module in the Coq standard library that provides an e!cient functional
implementation of maps using AVL trees (FMapAVL).4 The standard library mod-
ule abstracts over both the type of keys and values of the map. However, unlike
mainstream programming languages, it requires satisfaction of a rich set of con-
straints on the type of keys in order to be instantiated with it. In particular, the
key must satisfy the requirements of being an order relation.5 Thus, we needed
to specify the notion of an order on lists of naturals (our data points). We did
this through an inductively-defined proposition in Coq that represents lexico-
graphic ordering on lists of naturals. This process took some e"ort to understand
what was expected by the FMapAVL library, as the Coq standard library contains
duplicate and deprecated modules and interfaces due to its evolution, and uses
di"erent notations and styles of specification across modules.

3.4 Application

Appendix B presents a small application of our implementation to the well-
known Iris flower data set [2]. We split the data set into conventional 80/20
training/test sets and build a classifier using the Manhattan distance metric
and K = 5. At least for some permutations of the training/test data, there are
no mis-classified data points. However, it should be noted that correctness of the
4 https://coq.inria.fr/doc/v8.16/stdlib/Coq.FSets.FMapAVL.html
5 https://coq.inria.fr/doc/v8.16/stdlib/Coq.Structures.Orders.html

5

Specification
Theorem classify_correct_some :
 forall dist_metric, dist_metric_wf dist_metric ->
 forall K k data labels query c,
 0 < K -> 0 < k ->
 length data >= K ->
 (forall d : datapt, List.In d data -> length d = k) -> (* all data of dimension k *)
 (forall d : datapt, List.In d data -> FMap.In d labels) -> (* every pt has a label *)

 classify dist_metric K k data labels query = Some c ->

 exists near far classes,
 Permutation data (near ++ far) /\ (* the `near` portion of the data *)
 length near = K /\ (* are the K *)
 all_in_leb (dist_metric query) near far /\ (* nearest neighbors *)
 ClassesOf labels near classes /\ (* `classes` are the labels of the `near`s *)
 IsPlurality c classes. (* c is the plurality of all the `near` labels *)

Specification (part 2) - completeness
.
.
.

classify dist_metric K k data labels query = None ->

~ exists c,
 IsPlurality c (lookup_labels labels
 (knn_search dist_metric K k (build_kdtree k data) query)).

Supporting Predicates

Inductive ClassesOf (LT : LabelTable) : list datapt -> list nat -> Prop :=

| classesOf_nil : ClassesOf LT nil nil

| classesOf_cons : forall k v ks vs,

MapsTo k v LT -> ClassesOf LT ks vs -> ClassesOf LT (k::ks) (v::vs).

Definition IsPlurality (m:nat) (ns:list nat) : Prop :=

List.In m ns /\ (forall m’, m’ = m \/ count ns m’ < count ns m).

Fig. 4. The ClassesOf and IsPlurality predicates.

will be exactly K (line 7): these are the K nearest neighbors. The all_in_leb

proposition (8) states that with respect to the distance metric anchored at the
query point, every data point in the near list is less than or equal to the distance
value to every point in the far list. Line 9 specifies that the data points in near

map to the labels in classes, based on labels. ClassesOf is an inductively
defined proposition that relates a list of data points to a list of labels, over a
fixed label table (Fig. 4). Finally, (line 10) the predicted class c must be the
mode of the class labels (classes) of the near data points. The IsPlurality

predicate states that m is the plurality element of ns when m → ns and the count
of anything (other than m itself) in ns is strictly less than the count of m in ns.

The proof of the first disjunct (the Some c result) of Theorem 1 (lines 4-10
in the theorem statement) is divided into two main parts. The first involves the
nearest neighbors (lines 6-8) and the second deals with certifying the plurality
class. For the former, the work in this paper applies the results of [16], which
culminated in a certified proof of the KNN search itself.

We are then left with establishing (lines 9 and 10 of Fig. 3) the correspon-
dence of the classes labels to the near points, and c as the plurality value of
those. Essentially, this involves proving that ClassesOf and IsPlurality are
specifications of the behavior of lookup_labels and plurality, respectively.
Theorem 2 in Fig. 5 is proved through straightforward induction. The premise
requires that every key k in the list of keys ks is present in the label table. For
Theorem 3, we establish three separate lemmas - one for each condition 2-4. In
each lemma, the proof proceeds by structural induction on the list ns. Since
we define the plurality function using the Coq Functional Induction library,7
we use the generated induction principle to reason about the function. When
applied, the principle generates 6 cases to be handled: one for each possible
“execution” path of the plurality function (Figure 2b, Section 3.2).

5 Conclusions and Future Work

This paper has presented a complete, functional, formally verified implementa-
tion of a standard KNN classification algorithm. “Formally verified” means that

7 https://coq.inria.fr/refman/using/libraries/funind.html

7

Reflections

• Coq standard library
• Function (functional induction)
• (In)Consistency – count_occ vs. count / eq_dec vs eqb

• User-defined tactics
• Permutations

• Specification correctness
• Alternate completeness ↔

• Development cost

eq_dec : forall x y : A, {x = y}+{x <> y}
eqb : nat -> nat -> bool .

https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Lists.List.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Specif.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Lists.List.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Logic.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Lists.List.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Specif.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Lists.List.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Logic.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Lists.List.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Specif.html
https://coq.inria.fr/doc/V8.9.1/stdlib/Coq.Init.Datatypes.html

Future Directions

• KNN variations
• Alternate tree data structures, dimension reduction, approximation, …

• Apply verification to “mainstream” language implementation

• Additional ML classification algorithms
• Toolkit of specification approaches and verification techniques

Thank you!
nadeem@acm.org

k-d trees
• Binary tree
• Nodes: k-dimensional data

points
• Each level partitioned based on

one of k dimensions
• Each subtree associated with

an (implicit) bounding box
• Enables sub-linear NN search

complexity through branch-
and-bound

SAC ’24, April 8–12, 2024, Avila, Spain Nadeem Abdul Hamid

A

B

C

G
E

I

F
D

H

A
(51, 75)

B
(25, 40)

C
(70, 70)

D
(10, 30)

E
(35, 90)

F
(55, 1)

G
(60, 80)

I
(50, 50)

H
(1, 10)

J
(55, 95)

J

A

B

C

G
E

I

F
D

H

A
(51, 75)

B
(25, 40)

C
(70, 70)

D
(10, 30)

E
(35, 90)

F
(55, 1)

G
(60, 80)

I
(50, 50)

H
(1, 10)

J
(55, 95)

J

Figure 1: A :-d tree and induced partitions in the R2 plane.

assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.

2 BACKGROUND
2.1 Nearest Neighbor Search Using :-d trees
A :-d tree is a binary tree whose nodes are :-dimensional data
points. Each level in the tree is associated with one of the : dimen-
sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to -nearest neighbors1 involves main-
taining a -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase is the number of nearest neighbors that are sought.

I: (50, 50)
A: (51, 75)
B: (25, 40)
C: (70, 70)
J: (55, 95)
H: (1, 10)
G: (60, 80)
F: (55, 1)
E: (35, 90)
D: (10, 30)Lowercase k = dimension of data points;

Uppercase K = number of neighbors

SAC ’24, April 8–12, 2024, Avila, Spain Nadeem Abdul Hamid

A

B

C

G
E

I

F
D

H

A
(51, 75)

B
(25, 40)

C
(70, 70)

D
(10, 30)

E
(35, 90)

F
(55, 1)

G
(60, 80)

I
(50, 50)

H
(1, 10)

J
(55, 95)

J

A

B

C

G
E

I

F
D

H

A
(51, 75)

B
(25, 40)

C
(70, 70)

D
(10, 30)

E
(35, 90)

F
(55, 1)

G
(60, 80)

I
(50, 50)

H
(1, 10)

J
(55, 95)

J

Figure 1: A :-d tree and induced partitions in the R2 plane.

assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.

2 BACKGROUND
2.1 Nearest Neighbor Search Using :-d trees
A :-d tree is a binary tree whose nodes are :-dimensional data
points. Each level in the tree is associated with one of the : dimen-
sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to -nearest neighbors1 involves main-
taining a -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase is the number of nearest neighbors that are sought.

